XML Schema Part 1: Structures
Second Edition

W3C Recommendation 28 October 2004

Thisversion:
http://www.w3.0rg/TR/2004/REC-xmlschema-1-20041028/

Latest version:

http://www.w3.0rg/TR/xmlschema-1/

Previous version:
http://www.w3.0rg/TR/2004/PER-xml schema-1-20040318/

Authors and Contributors:

Henry S. Thompson (University of Edinburgh) <ht@cogsci.ed.ac.uk>

David Beech (Oracle Corporation) <David.Beech@oracle.com>

Murray Maoney (for Commerce One) <murray @muzmo.com>

Noah Mendelsohn (Lotus Development Corporation) <Noah_M endel sohn@I otus.com>

Copyright © 2004 W3C® (MIT, INRIA, Keio), All Rights Reserved.
W3C liability, trademark, document use, and software licensing rules apply.

Abstract

XML Schema: Sructures specifies the XML Schema definition language, which offers facilities for
describing the structure and constraining the contents of XML 1.0 documents, including those which
exploit the XML Namespace facility. The schema language, which is itself represented in XML 1.0 and
uses namespaces, substantially reconstructs and considerably extends the capabilities found in XML 1.0
document type definitions (DTDs). This specification depends on XML Schema Part 2: Datatypes.

http://www.w3.org/
http://www.w3.org/TR/2004/REC-xmlschema-1-20041028/
http://www.w3.org/TR/xmlschema-1/
http://www.w3.org/TR/2004/PER-xmlschema-1-20040318/
mailto:ht@cogsci.ed.ac.uk
mailto:David.Beech@oracle.com
mailto:murray@muzmo.com
mailto:Noah_Mendelsohn@lotus.com
http://www.w3.org/Consortium/Legal/ipr-notice-20000612#Copyright
http://www.w3.org/
http://www.lcs.mit.edu/
http://www.inria.fr/
http://www.keio.ac.jp/
http://www.w3.org/Consortium/Legal/ipr-notice-20000612#Legal_Disclaimer
http://www.w3.org/Consortium/Legal/ipr-notice-20000612#W3C_Trademarks
http://www.w3.org/Consortium/Legal/copyright-documents-19990405
http://www.w3.org/Consortium/Legal/copyright-software-19980720

i
Status of this document

This section describes the status of this document at the time of its publication. Other documents may
supersede this document. A list of current W3C publications and the latest revision of thistechnical report
can be found in the W3C technical reportsindex at http://mwww.w3.0org/TR/.

Thisisa\W3C Recommendation, which forms part of the Second Edition of XML Schema. Thisdocument
has been reviewed by W3C Members and other interested parties and has been endorsed by the Director
as aW3C Recommendation. It is a stable document and may be used as reference material or cited as a
normative reference from another document. W3C's role in making the Recommendation is to draw
attention to the specification and to promote its widespread deployment. This enhances the functionality
and interoperability of the Web.

This document has been produced by the W3C XML Schema Working Group as part of the W3C XML
Activity. The goals of the XML Schemalanguage are discussed in the XML Schema Requirements docu-
ment. The authors of this document are the members of the XML SchemaWorking Group. Different parts
of this specification have different editors.

This document was produced under the 24 January 2002 Current Patent Practice (CPP) as amended by the
W3C Patent Policy Transition Procedure. The Working Group maintains apublic list of patent disclosures
relevant to this document; that page also includes instructions for disclosing a patent. An individual who
has actual knowledge of a patent which the individual believes contains Essential Claim(s) with respect
to this specification should disclose the information in accordance with section 6 of the WW3C Patent Palicy.

The English version of this specification is the only normative version. Information about trangl ations of
this document is available at http://www.w3.0rg/2001/05/xmlschema-transl ations.

This second edition is not anew version, it merely incorporates the changes dictated by the correctionsto
errorsfound in thefirst edition asagreed by the XML SchemaWorking Group, asaconvenienceto readers.
A separate list of all such correctionsis available at http://www.w3.0rg/2001/05/xmlschema-errata.

The erratalist for this second edition is available at http://www.w3.0rg/2004/03/xmlschema-errata.

Please report errors in this document to www-xml-schema-comments@w3.0rg (archive).

|:| David Beech has retired since the publication of the first edition, and can be reached at davidbeech@earthlink.net.
Murray Maloney is no longer affiliated with Commerce One; his contact details are unchanged.

Noah Mendel sohn's affiliation has changed since the publication of thefirst edition. Heisnow at IBM, and can be
contacted at noah_mendel sohn@us.ibm.com

XML Schema Part 1: Structures

http://www.w3.org/TR/
http://www.w3.org/2004/02/Process-20040205/tr.html#RecsW3C
http://www.w3.org/XML/Schema
http://www.w3.org/XML/Activity
http://www.w3.org/XML/Activity
http://www.w3.org/TR/NOTE-xml-schema-req
http://www.w3.org/TR/2002/NOTE-patent-practice-20020124
http://www.w3.org/2004/02/05-pp-transition
http://www.w3.org/2002/11/xml-schema-IPR-statements.html
http://www.w3.org/Consortium/Patent-Policy-20040205/#sec-Disclosure
http://www.w3.org/2001/05/xmlschema-translations
http://www.w3.org/TR/2001/REC-xmlschema-1-20010502/
http://www.w3.org/2001/05/xmlschema-errata
http://www.w3.org/2004/03/xmlschema-errata
mailto:www-xml-schema-comments@w3.org
http://lists.w3.org/Archives/Public/www-xml-schema-comments/
mailto:davidbeech@earthlink.net
mailto:noah_mendelsohn@us.ibm.com

Table of Contents

IO I 11 o [T § o o PRSPPSO 1
L0 PUIOSE ..ttt ettt ettt b e bt e s h e s ae e s bt e bt e eh e e she e she e sa e e eRe e ebe e ehe e she e eheeaReeeReeeheeeheeeanesnnesneeenneas 1
1.2. Dependencies on Other SPECITICALIONScvieeceieieceece e e 2
1.3. Documentation Conventions and TEMINOIOGYccceerererrererrereseriereeesre e seeseeessesees 2

2. CoNCEPLUAl FramMEBWOTKoccueiiieiie ettt et e e ste e e e st s st e te et esre e eaeeeseesneesneesaseeseenreesneens 3
2.1. Overview Of XML SCHEMAcociie et e e 3
2.2. XML SchemaAbstract Data MOUE!ccociiirenirinirisieseesese s s s 4

2.2.1. Type Definition COMPONENLScccoeiiierieieiieeie e rieseeseesressessesseeseesreesessressnessassssessseess 5
2.2.1.1. Type Definition HIErarchyooooooe e 5

2.2.1.2. SIMple TYPE DEfINITION ...cocueecee et 6
2.2.1.3. Complex TYPe DEfiNITIONcooiiiieeeeese e 6

2.2.2. Declaration COMPONENLScecvereriereeriesteseeeesesseseessessessesssessessesseessessessesssessessessesssessenns 7
2.2.2.1. ElemMent DECIAralioNcecceeiiieiiieitieiteeeteeste et esteesteeste e te e teesteesteesbeesbeesbeeteenseesreenns 7
2.2.2.2. Element SUDSEITULION GIOUDvoivereeereeriesieeiesesieseeseestesseeseeseessessesseseesseensessessessennes 7

2.2.2.3. Attribute DECIAralionc.eccveeiieeiiieiie ettt sbe e sre e s re e b e b e be e re e re e 7

2.2.2.4. NOtation DECIArAliONcccveieiiiicie e see et ee st e e e e s e e saeeste s saeesaeesaaesaeesaeesreeas 8

2.2.3. Model Group COMPONENLScceiveereeiiesiesieeeestesteseessestesreseessessesseessessessesssessessesseessessessenns 8
2.2.3. 1. MOUE! GIOUP ...evevirieieeeiesiesie sttt st st st besae st ebe et e e be b st e e 8
2.2.3.2. PaTIClE ettt nns 8
2.2.3.3. ADULE USE ...ttt st 8

P SV [o= o SRS 8

2.2.4. ldentity-constraint Definition COMPONENLESccceeierrieiier s e e e 9
2.2.5. Group Definition COMPONENTScceoveereriisrerieeeese st see e see e se e seneeneenes 9
2.25.1. Model Group DEfiNITIONcveeeiiieeee e ens 9
2.2.5.2. Attribute Group DEfINITIONccociviririeeeesese e 9

2.2.6. ANNOLatioN COMPONENESecviiieeiieitisieeee e st eeese e ereesaestesreeseessessesaeessessesseesessessessaensessens 9
2.3. Constraints and Validation RUIESccoieiieiieciceceecte ettt ettt et ettt e be b e neeneenneens 9
P e 0T 1= L 10
2.5. Names and SYyMDOl SPACEScccveiriiiiieie ettt st e it e sre e s e e tesreereenestesnneaeseas 11
2.6. Schema-Related Markup in Documents Being Validatedcccoceerinenneneneneseeenesienienes 11
B 0 D TGS T 1Y/ 0 L= SRR 12
ST G 1 4 1 12
2.6.3. xsi:schemalocation, xsi:noNamespaceSChemal 0CatioNccvcvveererereeceeneseseeneenns 12

2.7. Representation of Schemas on the World Wide WED ... 12

3. Schema Component DELAIIScceviviiiiereerr st eaeenreesneesnneens 13

30 I 11 0o (1 1o o OSSPSR RORPRSN 13
3.1.1. Components and PropErtiESccveieeiieerieeseeseeseeseesteese e s e e steesseesreesee s sreesreesseesseessesssesses 13
3.1.2. XML Representations Of COMPONENESevveererererieeeesieseeseenesesseseesseseeeseesseseesessene 14
3.1.3. The Mapping between XML Representations and COmMponentsccceeeeeveneseceennenn 14
3.1.4. White Space Normalization during Validationcccceeveeieenieenieesien e seeseesee e 15

XML Schema Part 1: Structures

3.2

3.3.

34.

35.

3.6.

3.7.

ALLHIDULE DECIArALIONS ... eeveveeeieie ettt ettt st see e e e teste e etesaesreeeessesneeneeneas 16
3.2.1. The Attribute Declaration Schema COMPONENTccceveviieeiese e 16
3.2.2. XML Representation of Attribute Declaration Schema Componentsccccoceeeeereenene 17
3.2.3. Constraints on XML Representations of Attribute Declarations...........cc.ceeveeerierereenenne 18
3.2.4. Attribute Declaration Validation RUIESccoiiirieininininee s 18
3.2.5. Attribute Declaration Information Set ContribULIONSccooeieeeerrnencerese e 19
3.2.6. Constraints on Attribute Declaration Schema COmMpPONENtscccevererereereresereneenenne 21
3.2.7. BUilt-in AttriDUte DECIAIatioNSccceueeuireirieieerese st 22
[T 1= <ol 1 o O 22
3.3.1. The Element Declaration Schema COMPONENccceeeeieeresieeieereseseesee e se e see e e 23
3.3.2. XML Representation of Element Declaration Schema Componentsccccceeeeeeereenene. 24
3.3.3. Constraints on XML Representations of Element Declarationscccccveveeeevierereesennn 27
3.3.4. Element Declaration Validation RUIESccccoiiinieinininienieeecsese s 28
3.3.5. Element Declaration Information Set ContribULioNSccoviiirrerrrenceere e 33
3.3.6. Constraints on Element Declaration Schema Componentsc.ccceeerereneneeceseseneeenne 36
Complex TYPE DEFINITIONSceiiriiieerieee ettt s e et s ene e e eeas 38
3.4.1. The Complex Type Definition Schema COmMPONENEccoceeererererereseseeseeesese e 39
3.4.2. XML Representation of Complex Type Definitionsccccooeveecenie v ceeccse e 40
3.4.3. Constraints on XML Representations of Complex Type Definitionscccceeeevenennens 47
3.4.4. Complex Type Definition Validation RUIEScccoereinerinineeeese s 48
3.4.5. Complex Type Definition Information Set Contributionscccceeveveiieneecesesesieenens 50
3.4.6. Constraints on Complex Type Definition Schema Componentscccccocvveererereeeeenens 51
3.4.7. Built-in Complex Type DEfiNItIONc.cooiiireeierienireeeeeses e 55
ATITTDULBUSES ...ttt s ae et e be s ee e st et e besae e e e seesneeneeneas 55
3.5.1. The Attribute Use Schema COMPONENLccceceeerererieieerieseseesesre e 55
3.5.2. XML Representation of Attribute Use COMPONENESccccceeieereieiieie e ereeee s 56
3.5.3. Constraints on XML Representations of Attribute USEScocvvveererrieeeene e 56
3.5.4. Attribute Use Validation RUIESccceeceriieieese et san et 56
3.5.5. Attribute Use Information Set ContribBULIONSccoeveieninenierncnese e 56
3.5.6. Constraints on Attribute Use Schema COmMPONENEScoocerereerienene e 56
Attribute Group DEfINITIONSocieeie ettt s e e resne s 56
3.6.1. TheAttribute Group Definition Schema Componentccccoevveeererenieneere e 57
3.6.2. XML Representation of Attribute Group Definition Schema Components 57
3.6.3. Constraints on XML Representations of Attribute Group Definitions............ccoceevevnnene 57
3.6.4. Attribute Group Definition Validation RUIEScccoiiiieeiireeere e 58
3.6.5. Attribute Group Definition Information Set Contributionscccevcvvivieecerievceseecenns 58
3.6.6. Constraints on Attribute Group Definition Schema Componentsccoeevevesieneennens 58
Model Group DEFINITIONSc..coveeeiriirierieeeesie ettt s a et neesnas 58
3.7.1. The Model Group Definition Schema Componentccccceveveeieriesieeeereese e 59
3.7.2. XML Representation of Model Group Definition Schema Componentsccccceeeeue. 59
3.7.3. Constraints on XML Representations of Model Group Definitionscoccceceeverennenees 60
3.7.4. Model Group Definition Validation RUIESccoeeveiiiecienececeese s 60

XML Schema Part 1: Structures

3.7.5. Model Group Definition Information Set ContribUtioNScccveeeveriereesese e 60
3.7.6. Constraints on Model Group Definition Schema Componentscccccvveeceveseeieesiennens 60
I3RS T AV oo = o T o1 SN 60
3.8.1. The Model Group SChema COMPONENTcccurereeererierereeerese e ens 61
3.8.2. XML Representation of Model Group Schema Componentsccovcvveeeereneseeceeneenn 61
3.8.3. Constraints on XML Representations of Model Groupsccocvvveeevennseseeneseseeseenns 62
3.8.4. Model Group Validation RUIESccccvieiiriiiererese et s 62
3.8.5. Model Group Information Set ContribBULIONSccoeeeiriiieeeerer e 63
3.8.6. Constraints on Model Group Schema COmMPONENEScccvivreererereereseesreeseeseesreseeneenns 63
GRS T 1o =P 65
3.9.1. The Particle Schema COMPONENEcccovirerieieeinesere e 65
3.9.2. XML Representation of Particle COMPONENESccccceieevereseeieesesesieesee e see e e enas 65
3.9.3. Constraints on XML Representations of Particlesccooeoeveieneennieneeese e 65
3.9.4. Particle Validation RUIEScoceiiiieeee ettt nnas 65
3.9.5. Particle Information Set ContribDULIONScocoviiinieerin s 68
3.9.6. Constraints on Particle Schema COmMPONENEScoeererireriere e 68
G I 0 YY1 o (o= o [T 74
3.10.1. The Wildcard Schema COMPONENTcceeeereieeeeese e 74
3.10.2. XML Representation of Wildcard Schema Componentsccceoeverereeienereseneeennenne 75
3.10.3. Constraints on XML Representations of WildCardscccoveveeveevvieeiecie s, 76
3.10.4. Wildcard Validation RUIEScccoiiiieee ettt 76
3.10.5. Wildcard Information Set ContribULIONScccevvrieeieerinieeeseese e 77
3.10.6. Constraints on Wildcard Schema COMPONENtScccceevviieeieese s 77
3.11. Identity-constraint DEfiNITIONSc.ccoereiiririsere e 79
3.11.1. The Identity-constraint Definition Schema Componentcccoeeceveverecvenieceeceenenn 79
3.11.2. XML Representation of Identity-constraint Definition Schema Components. 80
3.11.3. Constraints on XML Representations of Identity-constraint Definitions 82
3.11.4. Identity-constraint Definition Validation RUIEScccoveviviiicieie e 82
3.11.5. Identity-constraint Definition Information Set Contributionscccccevvevieevieevieesieenienns 84
3.11.6. Constraints on Identity-constraint Definition Schema Componentsccccvevereeeene. 85
G 22 N[= 10 g I 1= ol == 1 o ST 86
3.12.1. The Notation Declaration Schema CompPONENtccoererererirereenesesesee e 86
3.12.2. XML Representation of Notation Declaration Schema Components...........ccccceeeeeeennene. 86
3.12.3. Constraints on XML Representations of Notation Declarationsccceeeverereeenne. 87
3.12.4. Notation Declaration Validation RUIEScccovvvieerinineeese e 87
3.12.5. Notation Declaration Information Set ContribULiONScocevveerieniineneineneseeeeee 87
3.12.6. Constraints on Notation Declaration Schema ComponNentscoccevcevereereneseeeceneenne 88
T T LY g o] = 1 o =SSP 88
3.13.1. The Annotation Schema COMPONENTcoeeieeririeeerere e e 88
3.13.2. XML Representation of Annotation Schema CompoNentscccceererereeeresereneenenne 89
3.13.3. Consgtraints on XML Representations of ANNOLatioNSccceeveeeecesesesieese e e 89
3.13.4. Annotation Validation RUIESc.eeieiii e e 89

XML Schema Part 1: Structures

Vi

3.13.5. Annotation Information Set CoNtribULIONScccceeveeriirieierise e 89

3.13.6. Constraints on Annotation Schema COMPONENLScccocvrerirererenenereneeese e 89

3.14. SIMple TYPE DEfINITIONScoeriiriirieieertesese et st b e nenr e 89

3.14.1. (non-normative) The Simple Type Definition Schema Componentccccccceveveevienene 20
3.14.2. (non-normative) XML Representation of Simple Type Definition Schema Compo-

(01 01 TP PRSP UURUPRRUR 91

3.14.3. Constraints on XML Representations of Simple Type Definitionscccvevveeceennnnne 92

3.14.4. Simple Type Definition Validation RUIES ..o 93

3.14.5. Simple Type Definition Information Set Contributionsccecoerviiereerene e 93

3.14.6. Constraints on Simple Type Definition Schema Componentscceceeeveeeeereeneennene 93

3.14.7. Built-in Simple Type DEfINITIONccovieiiireriieecre e 96

3.15. SChEMAS @S AWNIOIE ...ttt sttt e te e beebeeneeenreenteens 96

3.15.1. The SCheMA ITSEITooieeee e e 96

3.15.2. XML Representations Of SCNEMAESccoiieeeieieeeerere et 97

3.15.2.1. References to Schema COMPONENESccveiviveeieree e eeens 98

3.15.2.2. References to Schema Components from Elsawhere ... 99

3.15.3. Constraints on XML Representations Of SChemascoccoeveerineneseeneseseeeseniens 99

3.15.4. Vdidation Rules for Schemas asaWhole ... 101

3.15.5. Schema Information Set CONtribULIONSccooiieeiereieeeerese e 101

3.15.6. Constraints on Schemas aS aWhOI€ccocvveeeeriiiceeese e 103

4. Schemas and Namespaces: Access and COMPOSITION ...cccceveriererieereneese e 103

4.1. Layer 1. Summary of the Schema-validity ASSesSment COreccvvvveerierrerverseesenseeseeenns 104

4.2. Layer 2: Schema Documents, Namespaces and COMPOSITIONcccevveveeeereseseeieeseeseeseenn,s 105
4.2.1. Assembling aschemafor asingletarget namespace from multiple schemadefinition

0 [0 0l 0T £ RSPRRRS 105

4.2.2. Including modified component definitionsc.eoerererereneneneeese s 106

4.2.3. References to schema components acroSS NAMESPACESccueeverrerreeruesiesreseessesseseeseenns 110

4.3. Layer 3: Schema Document Access and Web-interoperabilitycccoovverevrininieneneenee, 112
4.3.1. Standards for representation of schemas and retrieval of schema documents on the

LT o OSSPSR 113

4.3.2. How schema definitions are located on the WEDooeeoiiiii e 113

5. Schemas and Schema-validity ASSESSIMENTcccceiiririiiirierie e 115

5.1. Errorsin Schema Construction and SITUCTUNEcoviirierieereresieneeiesesie e seeseseseens 115

5.2. AsSESSING SChEMAVAlIAITY ...oveueeiieiiiiiieeee et 116

5.3. MiSSING SUD-COMPONENTSeeiieieieeieeteeie ettt e e seesee et eseeseeeneeeesaesaeeneesenneens 117

5.4. Responsibilities of Schema-aware ProCESSOIScccuciiiciereieeeese et 118

Appendices
A. Schema for Schemas (NOrMALIVE)cccevirieriieere e e 118
B. REfErenCes (NOrMALIVE)ccceeiveeiesie ettt st st s e e e nreeneas 118

XML Schema Part 1: Structures

C. Outcome Tabulations (NOFMALIVE)coccrerererererere et se e e e se e e e e e 119
(ORI £ T = o) g I LU =S 119
C.2. Contributions to the post-schema-validation INfOSELcooereiererierereeee e 119
C.3. Schema Representation CONSITAINEScceceerereneeeresesereeeseseeseesee e seeseesee e ssesseseenessenns 119
C.4. Schema Component CONSITAINTSc.eoveererierierieeeese et sre e se e sse s e e ene 119

D. Required Information Set [tems and Properties (NOrmative)c.cccoeevevercenesieeneseennenn 119

E. Schema Components Diagram (NON-NOMMAaLIVE)ccccevvreerenernnnensiesesseeseesseeseeseessesseenes 120

F. GlOSSary (NON-NOFMALIVE)c.ecciiiieriisieeiesie e e see st sies s e sae s sae s s sse s b aesbessesresseessesseensens 120

G. DTD for Schemas (NON-NOFMALIVE)cceviriirierieiieniesie e e e s see s seesresaeneens 120

H. Analysis of the Unique Particle Attribution Constraint (non-normative)ccoceevennene. 121

|. References (NON-NOTMMEALIVE)coceiiiriiriiseesiesessiesressee e see e saesre e sbe e e tesseestesaeesaesseensesseans 122

J. Acknowledgements (NON-NOIFMELIVE)ccccoieriiieniiriseesie e se e s s ae s e sseenees 122

XML Schema Part 1: Structures

viii

This pageisintentionally left blank.

XML Schema Part 1: Structures

Purpose Page 1 of 124

1. Introduction

This document sets out the structural part (XML Schema: Sructures) of the XML Schema definition lan-
guage.

Chapter 2 presentsa § 2 — Conceptua Framework on page 3 for XML Schemas, including an introduction
to the nature of XML Schemas and an introduction to the XML Schema abstract data model, along with
other terminology used throughout this document.

Chapter 3, § 3— Schema Component Detail s on page 13, specifiesthe preci se semantics of each component
of the abstract model, the representation of each component in XML, with referenceto aDTD and XML
Schema for an XML Schema document type, along with a detailed mapping between the elements and
attribute vocabulary of this representation and the components and properties of the abstract model.

Chapter 4 presents § 4 — Schemas and Namespaces: Access and Composition on page 103, including the
connection between documents and schemas, the import, inclusion and redefinition of declarations and
definitions and the foundations of schema-validity assessment.

Chapter 5 discusses § 5 — Schemas and Schema-validity Assessment on page 115, including the overall
approach to schema-validity assessment of documents, and responsibilities of schema-aware processors.

The normative appendices include a Appendix A — Schema for Schemas (normative) on page 118 for the
XML representation of schemas and Appendix B — References (normative) on page 118.

The non-normative appendicesinclude the Appendix G —DTD for Schemas (non-normative) on page 120
and a Appendix F —Glossary (non-normative) on page 120.

This document is primarily intended as a language definition reference. As such, although it contains a
few examples, itisnot primarily designed to serve asamotivating introduction to the design and its features,
or asatutoria for new users. Rather it presents acareful and fully explicit definition of that design, suitable
for guiding implementations. For those in search of a step-by-step introduction to the design, the non-
normative [XML Schema: Primer] is amuch better starting point than this document.

1.1. Purpose

The purpose of XML Schema: Structures is to define the nature of XML schemas and their component
parts, provide an inventory of XML markup constructs with which to represent schemas, and define the
application of schemasto XML documents.

The purpose of an XML Schema: Structures schemaiis to define and describe a class of XML documents
by using schema components to constrain and document the meaning, usage and relationships of their
constituent parts: datatypes, €l ements and their content and attributes and their values. Schemas may also
provide for the specification of additional document information, such as normalization and defaulting of
attribute and element val ues. Schemas have facilitiesfor self-documentation. Thus, XML Schema: Structures
can be used to define, describe and catalogue XML vocabularies for classes of XML documents.

Any application that consumes well-formed XML can use the XML Schema: Structures formalism to
express syntactic, structural and value constraints applicable to its document instances. The XML Schema:
Structures formalism allows a useful level of constraint checking to be described and implemented for a
wide spectrum of XML applications. However, the language defined by this specification does not attempt
to provideall thefacilitiesthat might be needed by any application. Some applications may require constraint
capabilities not expressiblein thislanguage, and so may need to perform their own additional validations.

XML Schema Part 1: Structures

Page 2 of 124 Introduction

1.2. Dependencies on Other Specifications

The definition of XML Schema: Structures depends on the following specifications: [XML-Infoset], [XML-
Namespaces], [XPath], and [XML Schemas. Datatypes].

See Appendix D —Required Information Set Items and Properties (normative) on page 119 for atabulation
of the information items and properties specified in [XML-Infoset] which this specification requires as a
precondition to schema-aware processing.

1.3. Documentation Conventions and Ter minology

The section introduces the highlighting and typography as used in this document to present technical
material.

Special terms are defined at their point of introduction in the text. For example atermis something used
with a special meaning. The definition is labeled as such and the term it defines is displayed in boldface.
The end of the definition is not specially marked in the displayed or printed text. Uses of defined terms
arelinksto their definitions, set off with middle dots, for instance term.

Non-normative examples are set off in boxes and accompanied by a brief explanation:

I:I <schema t ar get Nanespace="htt p: // ww. exanpl e. comf XM_Schena/ 1. 0/ mySchema" >

And an explanation of the example.

The definition of each kind of schema component consists of a list of its properties and their contents,
followed by descriptions of the semantics of the properties:

Definition of the property.
References to properties of schema components are links to the relevant definition as exemplified above,
set off with curly braces, for instance .

The correspondence between an element information item which is part of the XML representation of a
schema and one or more schema components is presented in atableau which illustrates the element infor-
mation item(s) involved. Thisisfollowed by atabulation of the correspondence between properties of the
component and properties of theinformation item. Where context may determinewhich of severa different
components may arise, several tabulations, one per context, are given. The property correspondences are
normative, as are theillustrations of the XML representation element information items.

In the XML representation, bold-face attribute names (e.g. count below) indicate a required attribute
information item, and the rest are optional. Where an attribute information item has an enumerated type
definition, the values are shown separated by vertical bars, asfor si ze below; if thereis adefault value,
it is shown following a colon. Where an attribute information item has a built-in ssmple type definition
defined in [XML Schemas: Datatypes], a hyperlink to its definition therein is given.

The alowed content of the information item is shown as agrammar fragment, using the Kleene operators
?,* and +. Each element name therein is a hyperlink to its own illustration.

|:| Theillustrations are derived automatically from the Appendix A — Schema for Schemas (normative) on page 118.
In the case of apparent conflict, the Appendix A — Schemafor Schemas (normative) on page 118 takes precedence,
as it, together with the Schema Representation Constraints, provide the normative statement of the form of XML
representations.

Description of what the property corresponds to, e.g. the value of the si ze attribute

XML Schema Part 1: Structures

Overview of XML Schema Page 3 of 124

References to elements in the text are links to the relevant illustration as exemplified above, set off with
angle brackets, for instance .

Referencesto propertiesof information items asdefined in [XML -Infoset] are notated aslinksto the relevant
section thereof, set off with square brackets, for example children.

Properties which this specification defines for information items are introduced as follows:

The value the property gets.
References to properties of information items defined in this specification are notated as links to their
introduction as exemplified above, set off with square brackets, for example .

The following highlighting is used for non-normative commentary in this document:

|:| General comments directed to all readers.

Following [XML 1.0 (Second Edition)], within normative prose in this specification, the words may and
must are defined as follows:

may

Conforming documents and XML Schema-aware processors are permitted to but need not behave
as described.

must

Conforming documents and XML Schema-aware processors are required to behave as described;
otherwise they arein error.

Note however that this specification provides a definition of error and of conformant processors' responsi-
bilities with respect to errors (see § 5 — Schemas and Schema-validity Assessment on page 115) whichis
considerably more complex than that of [XML 1.0 (Second Edition)].

2. Conceptual Framework

This chapter gives an overview of XML Schema: Structures at the level of its abstract data model. § 3 —
Schema Component Details on page 13 provides detail s on thismodel, including anormative representation
in XML for the components of the model. Readers interested primarily in learning to write schema docu-
ments may wish to first read [XML Schema: Primer] for atutorial introduction, and only then consult the
sub-sections of § 3 — Schema Component Details on page 13 named XML Representation of ... for the
details.

2.1. Overview of XML Schema

An XML Schema consists of components such as type definitions and element declarations. These can be
used to assess the validity of well-formed element and attribute information items (as defined in [XML-
Infoset]), and furthermore may specify augmentationsto those items and their descendants. This augmen-
tation makes explicit information which may have beenimplicit in the original document, such as normalized
and/or default values for attributes and elements and the types of element and attribute information items.
We refer to the augmented infoset which results from conformant processing as defined in this specification
as the post-schema-validation infoset, or PSVI.

Schema-validity assessment has two aspects:

XML Schema Part 1: Structures

Page 4 of 124 Conceptual Framework
1. Determining local schema-validity, that is whether an element or attribute information item satisfies
the constraints embodied in the relevant components of an XML Schema;

2. Synthesizing an overall validation outcome for the item, combining local schema-validity with the
results of schema-validity assessments of its descendants, if any, and adding appropriate augmentations
to the infoset to record this outcome.

Throughout this specification, theword valid and its derivatives are used to refer to above, the determination
of local schema-validity.

Throughout this specification, theword assessment isused to refer to the overall process of local validation,
schema-validity assessment and infoset augmentation.

2.2. XML SchemaAbstract Data M odel

This specification builds on [XML 1.0 (Second Edition)] and [XML-Namespaces]. The concepts and
definitions used herein regarding XML are framed at the abstract level of information items as defined in
[XML-Infoset]. By definition, this use of the infoset provides a priori guarantees of well-formedness (as
defined in [XML 1.0 (Second Edition)]) and namespace conformance (as defined in [XM L-Namespaces])
for al candidates for assessment and for al schema documents.

Just as [XML 1.0 (Second Edition)] and [XML-Namespaces] can be described in terms of information
items, XML Schemas can be described in terms of an abstract data model. In defining XML Schemasin
terms of an abstract data model, this specification rigorously specifies the information which must be
available to a conforming XML Schema processor. The abstract model for schemas is conceptual only,
and does not mandate any particular implementation or representation of this information. To facilitate
interoperation and sharing of schema information, a normative XML interchange format for schemasis
provided.

Schema component is the generic term for the building blocks that comprise the abstract data model of the
schema. An XML Schema isaset of schema components. There are 13 kinds of component in al, falling
into three groups. The primary components, which may (type definitions) or must (element and attribute
declarations) have names are as follows:

» Simple type definitions

» Complex type definitions

» Attribute declarations

» Element declarations

The secondary components, which must have names, are as follows:
» Attribute group definitions

* ldentity-constraint definitions

* Model group definitions

* Notation declarations

Finally, the “helper” components provide small parts of other components; they are not independent of
their context:

e Annotations

XML Schema Part 1: Structures

XML SchemaAbstract Data M odel Page 5 of 124

* Model groups
» Particles

* Wildcards

» Attribute Uses

During validation, declaration components are associated by (qualified) name to information items being
validated.

On the other hand, definition components define internal schema components that can be used in other
schema components.

Declarations and definitions may have and be identified by names, which are NCNames as defined by
[XML-Namespaces].

Severa kinds of component have a target namespace, which is either absent or a namespace name, also
as defined by [XML-Namespaces]. The target namespace serves to identify the namespace within which
the associ ation between the component and its name exists. In the case of declarations, thisin turn determines
the namespace name of, for example, the element information items it may validate.

|:| At theabstract level, thereisno requirement that the components of aschema share atarget namespace. Any schema
for use in assessment of documents containing names from more than one namespace will of necessity include
componentswith different target namespaces. This contrastswith the situation at the level of the XML representation
of components, in which each schema document contributes definitions and declarationsto asingle target namespace.

Validation, defined in detail in § 3 — Schema Component Details on page 13, is arelation between infor-
mation items and schema components. For exampl e, an attribute information item may validate with respect
to an attribute declaration, alist of element information itemsmay validate with respect to acontent model,
and so on. The following sections briefly introduce the kinds of components in the schema abstract data
model, other major features of the abstract model, and how they contribute to validation.

2.2.1. Type Definition Components

The abstract model provides two kinds of type definition component: simple and complex.

This specification uses the phrase type definition in cases where no distinction need be made between
simple and complex types.

Type definitions form a hierarchy with a single root. The subsections below first describe characteristics
of that hierarchy, then provide an introduction to simple and complex type definitions themsel ves.

2.2.1.1. Type Definition Hierarchy

Except for a distinguished ur-type definition, every type definition is, by construction, either arestriction
or an extension of some other type definition. The graph of these relationships forms a tree known as the
Type Definition Hierarchy.

A type definition whose declarations or facets are in a one-to-one relation with those of another specified
type definition, with each in turn restricting the possibilities of the one it corresponds to, is said to be a
restriction. The specific restrictions might include narrowed ranges or reduced aternatives. Members of
atype, A, whose definition is arestriction of the definition of another type, B, are always members of type
B aswell.

A complex type definition which allows element or attribute content in addition to that allowed by another
specified type definition is said to be an extension.

XML Schema Part 1: Structures

Page 6 of 124 Conceptual Framework

A distinguished complex type definition, the ur-type definition, whose name is anyType in the XML
Schema namespace, is present in each XML Schema, serving as the root of the type definition hierarchy
for that schema.

A type definition used as the basis for an extension or restriction is known as the base type definition of
that definition.

2.2.1.2. Simple Type Definition

A simple type definition is a set of constraints on strings and information about the values they encode,
applicableto the normalized value of an attribute information item or of an e ement information item with
no element children. Informally, it appliesto the values of attributes and the text-only content of elements.

Each simple type definition, whether built-in (that is, defined in [XML Schemas: Datatypes]) or user-

defined, isarestriction of some particular simple base type definition. For the built-in primitive type defi-

nitions, this is the simple ur-type definition, a special restriction of the ur-type definition, whose nameis
anySimpleType in the XML Schema namespace. The simple ur-type definition is considered to have an
unconstrained lexical space, and a value space consisting of the union of the value spaces of all the built-
in primitive datatypes and the set of all lists of all members of the value spaces of al the built-in primitive
datatypes.

The mapping from lexical spaceto value space is unspecified for items whose type definition isthe simple
ur-type definition. Accordingly this specification does not constrain processors behaviour in areas where
this mapping is implicated, for example checking such items against enumerations, constructing default
attributes or elements whose declared type definition is the ssimple ur-type definition, checking identity
constraints involving such items.

|:| The Working Group expects to return to this areain afuture version of this specification.

Simpletypes may al so be defined whose members are lists of items themselves constrained by some other
simple type definition, or whose membership is the union of the memberships of some other simple type
definitions. Such list and union simpletype definitions are al so restrictions of the simple ur-type definition.

For detailed information on simple type definitions, see § 3.14 — Simple Type Definitions on page 89 and
[XML Schemas: Datatypes]. The latter also defines an extensive inventory of pre-defined simple types.

2.2.1.3. Complex Type Definition

A complex type definition is a set of attribute declarations and a content type, applicable to the attributes
and children of an element information item respectively. The content type may require the children to
contain neither element nor character information items (that is, to be empty), to be astring which belongs
to a particular simple type or to contain a sequence of element information items which conforms to a
particular model group, with or without character information items as well.

Each complex type definition other than the ur-type definition is either
e aredtriction of acomplex base type definition

or

» anextension of asimple or complex base type definition.

A complex type which extends another does so by having additional content model particles at the end of
the other definition's content model, or by having additional attribute declarations, or both.

XML Schema Part 1: Structures

XML SchemaAbstract Data M odel Page 7 of 124

|:| This specification allows only appending, and not other kinds of extensions. This decision simplifies application
processing required to cast instances from derived to base type. Future versions may allow more kinds of extension,
requiring more complex transformations to effect casting.

For detailed information on complex type definitions, see § 3.4 — Complex Type Definitions on page 38.

2.2.2. Declaration Components

There are three kinds of declaration component: element, attribute, and notation. Each is described in a
section below. Also included is a discussion of element substitution groups, which is a feature provided
in conjunction with element declarations.

2.2.2.1. Element Declaration

An element declaration is an association of a name with a type definition, either simple or complex, an
(optional) default value and a (possibly empty) set of identity-constraint definitions. The association is
either global or scoped to acontaining complex type definition. A top-level element declaration with name
‘A" is broadly comparable to a pair of DTD declarations as follows, where the associated type definition
fillsin the ellipses:

<IELEMENT A . . .>
<IATTLIST A. . .>

Element declarations contribute to validation as part of model group validation, when their defaults and
type components are checked against an element information item with a matching name and namespace,
and by triggering identity-constraint definition validation.

For detailed information on element declarations, see § 3.3 — Element Declarations on page 22.

2.2.2.2. Element Substitution Group

In XML 1.0, the name and content of an element must correspond exactly to the element type referenced
in the corresponding content model.

Through the new mechanism of element substitution groups, XML Schemas provides a more powerful
model supporting substitution of one named element for another. Any top-level element declaration can
serve as the defining member, or head, for an el ement substitution group. Other top-level element declara-
tions, regardless of target namespace, can be designated as members of the substitution group headed by
thiselement. In a suitably enabled content model, areference to the head validates not just the head itself,
but elements corresponding to any other member of the substitution group as well.

All such members must have type definitions which are either the same as the head's type definition or
restrictions or extensions of it. Therefore, athough the names of elements can vary widely as new
namespaces and members of the substitution group are defined, the content of member elementsisstrictly
limited according to the type definition of the substitution group head.

Note that element substitution groups are not represented as separate components. They are specified in
the property values for element declarations (see § 3.3 — Element Declarations on page 22).

2.2.2.3. Attribute Declar ation

An attribute declaration is an association between a name and a simple type definition, together with
occurrence information and (optionally) a default value. The association is either global, or loca to its
containing complex type definition. Attribute declarations contribute to validation as part of complex type

XML Schema Part 1: Structures

Page 8 of 124 Conceptual Framework
definition validation, when their occurrence, defaults and type components are checked against an attribute
information item with a matching name and namespace.

For detailed information on attribute declarations, see § 3.2 — Attribute Declarations on page 16.

2.2.2.4. Notation Declaration

A notation declaration is an association between a name and an identifier for a notation. For an attribute
information item to be valid with respect to a NOTATI ON simple type definition, its value must have been
declared with a notation declaration.

For detailed information on notation declarations, see § 3.12 — Notation Declarations on page 86.

2.2.3. Model Group Components

Themodel group, particle, and wildcard components contribute to the portion of acomplex type definition
that controls an element information item's content.

2.2.3.1. Model Group

A model group isaconstraint in theform of agrammar fragment that appliesto lists of element information
items. It consists of alist of particles, i.e. element declarations, wildcards and model groups. There are
three varieties of model group:

» Sequence (the element information items match the particles in sequential order);
» Conjunction (the element information items match the particles, in any order);
» Digunction (the element information items match one of the particles).

For detailed information on model groups, see § 3.8 — Model Groups on page 60.
2.2.3.2. Particle

A particle is aterm in the grammar for element content, consisting of either an element declaration, a
wildcard or amodel group, together with occurrence constraints. Particles contribute to validation as part
of complex type definition validation, when they allow anywhere from zero to many element information
items or sequences thereof, depending on their contents and occurrence constraints.

A particle can be used in acomplex type definition to constrain the validation of the children of an element
information item; such a particle is called a content model.

XML Schema: Structures content models are similar to but more expressive than [XML 1.0 (Second Edition)]
content models; unlike [XML 1.0 (Second Edition)], XML Schema: Structures applies content models to the vali-
dation of both mixed and element-only content.

For detailed information on particles, see § 3.9 — Particles on page 65.
2.2.3.3. Attribute Use

An attribute use plays arole similar to that of aparticle, but for attribute declarations: an attribute declaration
within acomplex type definition isembedded within an attribute use, which specifieswhether the declaration
requires or merely alows its attribute, and whether it has a default or fixed value.

2.2.3.4. Wildcard

A wildcard isaspecial kind of particle which matches element and attribute information items dependent
on their namespace name, independently of their local names.

XML Schema Part 1: Structures

Constraints and Validation Rules Page 9 of 124
For detailed information on wildcards, see § 3.10 — Wildcards on page 74.

2.2.4. | dentity-constraint Definition Components

An identity-constraint definition is an association between aname and one of several varieties of identity-
constraint related to uniqueness and reference. All the varieties use [XPath] expressions to pick out sets
of information items relative to particular target element information items which are unique, or akey, or
avalid reference, within a specified scope. An element information item is only valid with respect to an
element declaration with identity-constraint definitions if those definitions are all satisfied for all the
descendants of that el ement information item which they pick out.

For detailed information on identity-constraint definitions, see § 3.11 — I dentity-constraint Definitions on
page 79.
2.2.5. Group Definition Components

There are two kinds of convenience definitions provided to enable the re-use of pieces of complex type
definitions: model group definitions and attribute group definitions.

2.2.5.1. Model Group Definition

A model group definition is an association between aname and amodel group, enabling re-use of the same
model group in several complex type definitions.

For detailed information on model group definitions, see § 3.7 — Model Group Definitions on page 58.
2.2.5.2. Attribute Group Definition

An attribute group definition is an association between aname and a set of attribute declarations, enabling
re-use of the same set in several complex type definitions.

For detailed information on attribute group definitions, see § 3.6 —Attribute Group Definitions on page 56.

2.2.6. Annotation Components

An annotation isinformation for human and/or mechanical consumers. Theinterpretation of suchinformation
is not defined in this specification.

For detailed information on annotations, see § 3.13 — Annotations on page 88.

2.3. Constraints and Validation Rules

The [XML 1.0 (Second Edition)] specification describes two kinds of constraints on XML documents:
well-formedness and validity constraints. Informally, the well-formedness constraints are those imposed
by the definition of XML itself (such as the rules for the use of the < and > characters and the rules for
proper nesting of elements), while validity constraints are the further constraints on document structure
provided by a particular DTD.

The preceding section focused on validation, that is the constraints on information items which schema
components supply. In fact however this specification providesfour different kinds of normative statements
about schema components, their representationsin XML and their contribution to the validation of infor-
mation items:

XML Schema Part 1: Structures

Page 10 of 124 Conceptual Framework

Schema Component Constraint

Constraints on the schema components themselves, i.e. conditions components must satisfy to be
componentsat all. Located in the sixth sub-section of the per-component sections of § 3—Schema
Component Details on page 13 and tabulated in Appendix C.4 — Schema Component Constraints
on page 119.

Schema Representation Constraint

Constraints on the representation of schemacomponentsin XML beyond those which are expressed
in Appendix A — Schemafor Schemas (normative) on page 118. Located in the third sub-section
of the per-component sections of 8 3 — Schema Component Details on page 13 and tabulated in
Appendix C.3 — Schema Representation Constraints on page 119.

Validation Rules

Contributionsto validation associated with schema components. Located in the fourth sub-section
of the per-component sections of § 3 — Schema Component Details on page 13 and tabulated in
Appendix C.1 —Validation Rules on page 119.

Schema | nformation Set Contribution

Augmentationsto post-schema-validation infosets expressed by schema components, which follow
as a conseguence of validation and/or assessment. Located in the fifth sub-section of the per-
component sections of 8§ 3 — Schema Component Details on page 13 and tabulated in
Appendix C.2 — Contributions to the post-schema-validation infoset on page 119.

The last of these, schema information set contributions, are not as new as they might at first seem. XML
1.0 validation augments the XML 1.0 information set in similar ways, for example by providing values
for attributes not present in instances, and by implicitly exploiting type information for normalization or
access. (As an example of the latter case, consider the effect of NMTOKENS on attribute white space, and
the semantics of | D and | DREF.) By including schema information set contributions, this specification
makes explicit some features that XML 1.0 left implicit.

2.4. Conformance

This specification describes three level s of conformance for schema aware processors. Thefirstisrequired
of all processors. Support for the other two will depend on the application environments for which the
processor is intended.

Minimally conforming processors must completely and correctly implement the Schema Component
Constraints, Validation Rules, and Schema Information Set Contributions contained in this specification.

Minimally conforming processors which accept schemas represented in the form of XML documents as
described in § 4.2 —Layer 2: Schema Documents, Namespaces and Composition on page 105 are additional ly
said to provide conformanceto the XML Representation of Schemas. Such processors must, when processing
schema documents, completely and correctly implement all Schema Representation Constraints in this
specification, and must adhere exactly to the specificationsin § 3 — Schema Component Detailson page 13
for mapping the contents of such documents to schema components for use in validation and assessment.

|:| By separating the conformance requirements relating to the concrete syntax of XML schema documents, this
specification admits processors which use schemas stored in optimized binary representations, dynamically created
schemas represented as programming language data structures, or implementations in which particular schemas
are compiled into executable code such as C or Java. Such processors can be said to be minimally conforming but
not necessarily in conformance to the XML Representation of Schemas.

XML Schema Part 1: Structures

Names and Symbol Spaces Page 11 of 124

Fully conforming processors are network-enabled processors which are not only both minimally conforming
and in conformance to the XML Representation of Schemas, but which additionally must be capable of
access ng schema documents from the World Wide Web according to 8§ 2.7 — Representation of Schemas
on the World Wide Web on page 12 and 8§ 4.3.2 — How schema definitions are located on the Web on
page 113. .

|:| Although this specification provides just these three standard levels of conformance, it is anticipated that other
conventions can be established in the future. For exampl e, the World Wide Web Consortium is considering conven-
tions for packaging on the Web a variety of resources relating to individual documents and namespaces. Should
such developments lead to new conventions for representing schemas, or for accessing them on the Web, new
levels of conformance can be established and named at that time. There is no need to modify or republish this
specification to define such additional levels of conformance.

See § 4 — Schemas and Namespaces: A ccess and Composition on page 103 for amore detail ed explanation
of the mechanisms supporting these levels of conformance.

2.5. Names and Symbol Spaces

Asdiscussed in § 2.2 — XML Schema Abstract Data Model on page 4, most schema components (may)
have names. If all such names were assigned from the same “pool”, then it would be impossible to have,
for example, a simple type definition and an element declaration both with the name “title” in a given
target namespace.

Therefore this specification introduces the term symbol space to denote a collection of names, each of
which is unigue with respect to the others. A symbol space is similar to the non-normative concept of
namespace partition introduced in [XML-Namespaces]. There is a single distinct symbol space within a
given target namespace for each kind of definition and declaration component identified in § 2.2 — XML
Schema Abstract Data Model on page 4, except that within a target namespace, simple type definitions
and complex type definitions share a symbol space. Within a given symbol space, names are unique, but
the same name may appear in more than one symbol space without conflict. For example, the same name
can appear in both a type definition and an element declaration, without conflict or necessary relation
between the two.

Locally scoped attribute and el ement declarations are special with regard to symbol spaces. Every complex
type definition definesits own local attribute and element declaration symbol spaces, where these symbol

spaces are distinct from each other and from any of the ather symbol spaces. So, for exampl e, two complex
type definitions having the same target namespace can contain a loca attribute declaration for the
unqualified name“ priority”, or contain alocal element declaration for the name “address’, without conflict
or necessary relation between the two.

2.6. Schema-Related Markup in Documents Being Validated

The XML representation of schema components uses a vocabulary identified by the namespace name
ht t p: // www. w3. or g/ 2001/ XM_Schenma. For brevity, the text and examples in this specification
use the prefix xs: to stand for this namespace; in practice, any prefix can be used.

XML Schema: Sructures also defines severa attributes for direct use in any XML documents. These
attributes are in a different namespace, which has the namespace name
ht t p: // www. w3. or g/ 2001/ XM_Schena- i nst ance. For brevity, the text and examples in this
specification use the prefix xsi : to stand for this latter namespace; in practice, any prefix can be used.
All schema processors have appropriate attribute declarations for these attributes built in, see Attribute

XML Schema Part 1: Structures

Page 12 of 124 Conceptual Framework

Declaration for the 'type' attribute type http://www.w3.0rg/2001/X M L Schemarinstance The built-in QName
simple type definition global absent absent , Attribute Declaration for the 'nil' attribute nil
http://www.w3.0rg/2001/X M L Schema-instance The built-in boolean simple type definition global absent
absent , Attribute Declaration for the ‘schemalocation' attribute schemal ocation
http://www.w3.0rg/2001/X M L Schema-instance An anonymous simpl e type definition, as follows: absent
http://www.w3.0rg/2001/X M L Schema-instance The built in simple ur-type definition absent list The built-
in anyURI simple type definition absent global absent absent and Attribute Declaration for the ‘'noNames-
paceSchemal ocation' attribute noNamespaceSchemal ocation http://www.w3.0rg/2001/X M L Schema-
instance The built-in anyURI simple type definition global absent absent .

2.6.1. xsi:type

The § 2.2.1.2 — Simple Type Definition on page 6 or § 2.2.1.3 — Complex Type Definition on page 6
used in validation of an element isusually determined by reference to the appropriate schemacomponents.
An element information item in an instance may, however, explicitly assert its type using the attribute
Xsi : type. The value of this attribute is a QName; see QName Interpretation Where the type of an
attribute information item in a document involved in validation isidentified as QName, its actual valueis
composed of alocal name and a namespace hame. Its actual value is determined based on its normalized
value and the containing element information item's in-scope namespaces following : 1. 2. In the absence
of the in-scope namespaces property in the infoset for the schema document in question, processors must
reconstruct equivalent information as necessary, using the namespace attributes of the containing element
information item and its ancestors. for the means by which the QName is associated with atype definition.

2.6.2. Xsi:nil

XML Schema: Structuresintroduces amechanism for signaling that an element should be accepted asvalid
when it has no content despite a content type which does not require or even necessarily allow empty
content. An element may be valid without content if it has the attribute xsi : ni | with thevaluet r ue.
An element so labeled must be empty, but can carry attributes if permitted by the corresponding complex

type.

2.6.3. xsi:schemal ocation, xsi:noNamespaceSchemal ocation

The xsi : schemalLocat i on and xsi : noNanmespaceSchemalLocat i on attributes can be used in
a document to provide hints as to the physical location of schema documents which may be used for
assessment. See § 4.3.2 — How schema definitions are located on the Web on page 113 for details on the
use of these attributes.

2.7. Representation of Schemas on the World Wide Web

On the World Wide Web, schemas are conventionally represented as XML documents (preferably of
MIME type appl i cation/xm or text/xm , but see of Inclusion Constraints and Semantics In
addition to the conditions imposed on element information items by the schemafor schemas, 1. 2. 3. Itis
not an error for the actual value of the schemal ocation attribute to fail to resolveit al, in which case no
corresponding inclusion is performed. It is an error for it to resolve but the rest of clause 1 above to fail
to be satisfied. Failure to resolve may well cause less than complete assessment outcomes, of course. As
discussed in, QNamesin XML representations may fail to resolve, rendering componentsincomplete and
unusabl e because of missing subcomponents. During schema construction, implementations must retain
QName values for such references, in case an appropriately-named component becomes available to dis-
charge the reference by the time it is actually needed. Absent target namespace names of such as-yet

XML Schema Part 1: Structures

I ntroduction Page 13 of 124

unresolved reference QNamesin d components must also be converted if is satisfied.), conforming to the
specifications in § 4.2 — Layer 2: Schema Documents, Namespaces and Composition on page 105. For
moreinformation on the representation and use of schemadocuments on the World WideWeb see§4.3.1—
Standards for representation of schemas and retrieval of schema documents on the Web on page 113 and
8 4.3.2 — How schema definitions are located on the Web on page 113.

3. Schema Component Details

3.1. Introduction

The following sections provide full details on the composition of all schema components, together with
their XML representations and their contributions to assessment. Each section is devoted to asingle com-
ponent, with separate subsections for

properties: their values and significance

XML representation and the mapping to properties
constraints on representation

validation rules

post-schema-validation infoset contributions

© g &~ W NP

constraints on the components themselves

The sub-sectionsimmediately bel ow introduce conventions and terminol ogy used throughout the component
sections.

3.1.1. Components and Properties

Components are defined in terms of their properties, and each property in turn is defined by giving its
range, that is the values it may have. This can be understood as defining a schema as a labeled directed
graph, where the root is a schema, every other vertex is a schema component or aliteral (string, boolean,
number) and every labeled edge is a property. The graph is not acyclic: multiple copies of components
with the same namein the same symbol space may not exist, so in some casesre-entrant chains of properties
must exist. Equality of components for the purposes of this specification is always defined as equality of
names (including target namespaces) within symbol spaces.

|:| A schema and its components as defined in this chapter are an idealization of the information a schema-aware
processor requires; implementations are not constrained in how they provideit. In particular, no implications about
literal embedding versus indirection follow from the use below of language such as "properties . . . having . . .
components as values".

Throughout this specification, the term absent is used as a distinguished property val ue denoting absence.

Any property not identified as optional isrequired to be present; optional properties which are not present
are taken to have absent as their value. Any property identified as a having a set, subset or list value may
have an empty value unless thisis explicitly ruled out: thisis not the same as absent. Any property value
identified as a superset or subset of some set may be equal to that set, unless a proper superset or subset
isexplicitly called for. By 'string' in Part 1 of this specification is meant a sequence of | SO 10646 characters
identified aslegal XML charactersin [XML 1.0 (Second Edition)].

XML Schema Part 1: Structures

Page 14 of 124 Schema Component Details

3.1.2. XML Representations of Components

The principal purpose of XML Schema: Structures is to define a set of schema components that constrain
the contents of instances and augment the information sets thereof. Although no external representation
of schemas is required for this purpose, such representations will obviously be widely used. To provide
for thisin an appropriate and interoperable way, this specification provides anormative XML representation
for schemas which makes provision for every kind of schema component. A document in thisform (i.e. a
element information item) isa schema document. For the schemadocument asawhole, and its constituents,
the sections below define correspondences between element information items (with declarations in
Appendix A — Schema for Schemas (hormative) on page 118 and Appendix G —DTD for Schemas (hon-
normative) on page 120) and schemacomponents. All the element information itemsin the XML represen-
tation of a schema must be in the XML Schema namespace, that is their namespace name must be
htt p: // www. w3. or g/ 2001/ XM_Schema. Although a common way of creating the XML Infosets
which are or contain schema documentswill be using an XML parser, thisis not required: any mechanism
which constructs conformant infosets as defined in [XML-Infoset] is a possible starting point.

Two aspects of the XML representations of components presented in the following sections are constant
across them all:

1. All of them alow attributes qualified with namespace names other than the XML Schema namespace
itself: these appear as annotationsin the corresponding schema component;

2. All of them alow an as their first child, for human-readable documentation and/or machine-targeted
information.

3.1.3. The Mapping between XML Representations and Components

For each kind of schemacomponent there isa corresponding normative XML representation. The sections
below describe the correspondences between the properties of each kind of schema component on the one
hand and the properties of information items in that XML representation on the other, together with con-
straints on that representation above and beyond those implicit in the Appendix A — Schemafor Schemas
(normative) on page 118.

The language used is as if the correspondences were mappings from XML representation to schema
component, but the mapping in the other direction, and therefore the correspondence in the abstract, can
always be constructed therefrom.

In discussing the mapping from XML representations to schema components bel ow, the value of acompo-
nent property is often determined by the value of an attribute information item, one of the attributes of an
element information item. Since schema documents are constrained by the Appendix A — Schema for
Schemas (normative) on page 118, thereisaways asimple type definition associated with any such attribute
information item. The phrase actual value is used to refer to the member of the value space of the simple
type definition associated with an attribute information item which corresponds to its normalized value.
This will often be a string, but may also be an integer, a boolean, a URI reference, etc. Thisterm is aso
occasionally used with respect to element or attribute information items in a document being validated.

Many properties are identified below as having other schema components or sets of components as values.
For the purposes of exposition, the definitionsin this section assume that (unless the property is explicitly
identified as optional) all such values arein fact present. When schema components are constructed from
XML representations involving reference by name to other components, this assumption may be violated
if one or more references cannot be resolved. This specification addresses the matter of missing components
in auniform manner, described in § 5.3 — Missing Sub-components on page 117: no mention of handling
missing components will be found in the individual component descriptions bel ow.

XML Schema Part 1: Structures

I ntroduction Page 15 of 124

Forward reference to named definitions and declarations is allowed, both within and between schema
documents. By the time the component corresponding to an XML representation which containsaforward
referenceisactually needed for validation an appropriatel y-named component may have become available
to discharge the reference: see § 4 — Schemas and Namespaces: Access and Composition on page 103 for
details.

3.1.4. White Space Nor malization during Validation

Throughout this specification, the initial value of some attribute information item is the value of the nor-
malized value property of that item. Similarly, theinitial value of an element information item isthe string
composed of, in order, the character code of each character information item in the children of that element
information item.

The above definition means that comments and processing instructions, even in the midst of text, are
ignored for all validation purposes.

The normalized value of an element or attribute information item isan initial value whose white space, if
any, has been normalized according to the value of the whiteSpace facet of the simple type definition used
initsvalidation:

preserve
No normalization is done, the value is the normalized value

replace
All occurrences of #x9 (tab), #x A (line feed) and #x D (carriage return) are replaced with #x20
(space).

collapse

Subsequent to the replacements specified above under replace, contiguous sequences of #x20s
are collapsed to asingle #x20, and initial and/or final #x20s are del eted.

If the simple type definition used in an item's validation is the simple ur-type definition, the normalized
value must be determined as in the preserve case above.

There are three aternative validation rules which may supply the necessary background for the above:
Attribute Locally Valid For an attribute information item to be locally valid with respect to an attribute
declaration 1. 2. 3. 4. (), Element Locally Valid (Type) For an element information item to be locally valid
with respect to a type definition 1. 2. 3. () or Element Locally Valid (Complex Type) For an element
information item to be locally valid with respect to a complex type definition 1. 2. 3. 4. 5. When an is
present, this does not introduce any ambiguity with respect to how attribute information items for which
an attribute useis present amongst the whose name and target namespace match are assessed. |n such cases
the attribute use always takes precedence, and the assessment of such items stands or falls entirely on the
basis of the attribute use and its . This follows from the details of . ().

Thesethreelevels of normalization correspond to the processing mandated in XML 1.0 for element content,
CDATA attribute content and tokenized attributed content, respectively. See Attribute Value Normalization
in [XML 1.0 (Second Edition)] for the precedent for replace and collapse for attributes. Extending this
processing to element content is necessary to ensure a consistent validation semantics for simple types,
regardless of whether they are applied to attributes or elements. Performing it twicein the case of attributes
whose normalized value has already been subject to replacement or collapse on the basis of information
inaDTD is necessary to ensure consistent treatment of attributes regardless of the extent to which DTD-
based information has been made use of during infoset construction.

XML Schema Part 1: Structures

http://www.w3.org/TR/REC-xml#AVNormalize

Page 16 of 124 Schema Component Details

|:| Even when DTD-based information has been appealed to, and Attribute Value Normalization has taken place, the
above definition of normalized value may mean further normalization takes place, as for instance when character
entity references in attribute values result in white space characters other than spacesin their initial values.

3.2. Attribute Declar ations
Attribute declarations provide for:
» Local validation of attribute information item values using a simple type definition;

» Specifying default or fixed values for attribute information items.

|:| <xs:attribute name="age" type="xs:positivelnteger" use="required"/>

The XML representation of an attribute declaration.

3.2.1. TheAttribute Declaration Schema Component
The attribute declaration schema component has the following properties:

An NCName as defined by [XML-Namespaces]. Either absent or anamespace name, asdefined in [XML-
Namespaces]. A simple type definition. Optional. Either global or a complex type definition. Optional. A
pair consisting of avalue and one of default, fixed. Optional. An annotation.

The property must match the local part of the names of attributes being validated.

The value of the attribute must conform to the supplied .

A non-absent value of the property provides for validation of namespace-qualified attribute information
items (which must be explicitly prefixed in the character-level form of XML documents). Absent values
of validate unqualified (unprefixed) items.

A of global identifies attribute declarations available for use in complex type definitions throughout the
schema. Locally scoped declarations are available for use only within the complex type definition identified
by the property. This property is absent in the case of declarations within attribute group definitions: their
scope will be determined when they are used in the construction of complex type definitions.

reproduces the functions of XML 1.0 default and #FI XED attribute values. default specifies that the
attribute is to appear unconditionally in the post-schema-validation infoset, with the supplied value used
whenever the attribute is not actually present; fixed indicates that the attribute value if present must equal
the supplied constraint value, and if absent receives the supplied value as for default. Note that it is values
that are supplied and/or checked, not strings.

See § 3.13 — Annotations on page 88 for information on the role of the property.

|:| A more complete and formal presentation of the semantics of , and is provided in conjunction with other aspects
of complex type validation (see Element Locally Valid (Complex Type) For an element information item to be
locally valid with respect to acomplex type definition 1. 2. 3. 4. 5. When an is present, this does not introduce any
ambiguity with respect to how attribute information items for which an attribute use is present amongst the whose
name and target namespace match are assessed. In such cases the attribute use always takes precedence, and the
assessment of such items stands or falls entirely on the basis of the attribute use and its . This follows from the
detailsof . .)

[XML-Infoset] distinguishes attributeswith namessuch asxm ns or xm ns: xs| fromordinary attributes,
identifying them as namespace attributes. Accordingly, it is unnecessary and in fact not possible for schemas

XML Schema Part 1: Structures

http://www.w3.org/TR/REC-xml#AVNormalize

Attribute Declarations Page 17 of 124

to contain attribute declarations corresponding to such namespace declarations, see xmins Not Allowed
The of an attribute declaration must not match xmins. The of an attribute isan NCName, which implicitly
prohibits attribute declarations of the form xmins:*. . No meansis provided in this specification to supply
adefault value for a namespace declaration.

3.2.2. XML Representation of Attribute Declaration Schema Components

The XML representation for an attribute declaration schema component is an element information item.
It specifies a simple type definition for an attribute either by reference or explicitly, and may provide
default information. The correspondences between the properties of the information item and properties
of the component are as follows:

If the element information item has as its parent, the corresponding schema component is as follows:

Theactual value of the nane attribute The actual value of thet ar get Namespace attribute of the parent
element information item, or absent if thereis none. The simple type definition corresponding to the element
information item in the children, if present, otherwise the simple type definition to by the actual value of
thet ype attribute, if present, otherwise the . global. If thereisadef aul t or af i xed attribute, then a
pair consisting of the actual value (with respect to the) of that attribute and either default or fixed, as
appropriate, otherwise absent. The annotation corresponding to the element information item in the children,
if present, otherwise absent.

otherwiseif the element information item has or asan ancestor and ther ef attributeisabsent, it corresponds
to an attribute use with properties as follows (unlessuse="' pr ohi bi t ed"' , in which case the item cor-
responds to nothing at all):

trueif the use attribute is present with actual valuer equi r ed, otherwise false. See the Attribute Decla
ration mapping immediately below. If thereisadef aul t or af i xed attribute, then apair consisting of
the actual value (with respect to the of the) of that attribute and either default or fixed, as appropriate,
otherwise absent. The actual value of the nane attribute If f or mis present and its actual valueisqual -

i fied,orif formisabsent and the actual value of attri but eFor mDef aul t on the ancestor is
qual i fi ed, thentheactual valueof thet ar get Nanespace attribute of the parent el ement information
item, or absent if thereis none, otherwise absent. The simple type definition corresponding to the element
information item in the children, if present, otherwise the simple type definition to by the actual value of
the t ype attribute, if present, otherwise the . If the element information item has as an ancestor, the
complex definition corresponding to that item, otherwise (the element information item is within an defi-
nition), absent. absent. The annotation corresponding to the element information item in the children, if
present, otherwise absent.

otherwise (the element information item has or asan ancestor and ther ef attributeis present), it corresponds
to an attribute use with properties as follows (unlessuse="' pr ohi bi t ed"' , in which case the item cor-
responds to nothing at all):

trueif the use attributeis present with actual valuer equi r ed, otherwise false. The (top-level) attribute
declaration to by the actual value of ther ef attribute If thereisadef aul t or af i xed attribute, then a
pair consisting of the actual value (with respect to the of the) of that attribute and either default or fixed,
as appropriate, otherwise absent.

Attribute declarations can appear at thetop level of aschemadocument, or within complex type definitions,
either as complete (local) declarations, or by reference to top-level declarations, or within attribute group
definitions. For complete declarations, top-level or local, thet ype attribute is used when the declaration
can use abuilt-in or pre-declared simple type definition. Otherwise an anonymousis provided inline.

The default when no simple type definition isreferenced or provided isthe simple ur-type definition, which
imposes no constraints at all.

XML Schema Part 1: Structures

Page 18 of 124 Schema Component Details

Attributeinformation itemsvalidated by atop-level declaration must be qualified with the of that declaration
(if thisisabsent, theitem must be unqualified). Control over whether attribute information items validated
by alocal declaration must be similarly qualified or not is provided by the f or mattribute, whose default
isprovided by theat t ri but eFor nDef aul t attribute on the enclosing , viaits determination of .

The namesfor top-level attribute declarations arein their own symbol space. The names of locally-scoped
attribute declarations reside in symbol spaces local to the type definition which contains them.

3.2.3. Constraintson XML Representations of Attribute Declar ations

src: Attribute Declaration Representation OK
In addition to the conditions imposed on element information items by the schema for schemas,

1. default andfi xed must not both be present.
2. Ifdefaul t and use areboth present, use must have the actual value opt i onal .
3. If theitem's parentisnot , then

A. Oneof ref or nane must be present, but not both.

B. If ref ispresent, thenal of ,f or mandt ype must be absent.

4. type and must not both be present.

The corresponding attribute declaration must satisfy the conditions set out in § 3.2.6 — Constraints on
Attribute Declaration Schema Components on page 21.

3.2.4. Attribute Declar ation Validation Rules

cvc: Attribute Locally Valid
For an attribute information item to be locally valid with respect to an attribute declaration

1. Thedeclaration must not be absent (see § 5.3 — Missing Sub-components on page 117 for how thiscan
fail to be the case).

2. ltsmust not be absent.

3. Theitem's normalized value must be locally valid with respect to that as per String Valid For a string
to be locally valid with respect to a simple type definition 1. 2. A string is adeclared entity nameif it
is equal to the name of some unparsed entity information item in the value of the unparsedEntities
property of the document information item at the root of the infoset containing the element or attribute
information item whose normalized value the string is. .

4. Theitem's actual value must match the value of the, if it is present and fixed.

cvc: Schema-Validity Assessment (Attribute)
The schema-validity assessment of an attribute information item depends on its validation alone.

During validation, associations between element and attribute information items among the children and
attributes on the one hand, and element and attribute declarations on the other, are established as a side-
effect. Such declarations are called the context-determined declarations. See (in Element Locally Valid

XML Schema Part 1: Structures

Attribute Declarations Page 19 of 124

(Complex Type) For an element information item to be locally valid with respect to a complex type defi-
nition 1. 2. 3. 4. 5. When an is present, this does not introduce any ambiguity with respect to how attribute
information items for which an attribute use is present amongst the whose hame and target namespace
match are assessed. In such cases the attribute use always takes precedence, and the assessment of such
items stands or falls entirely on the basis of the attribute use and its . This follows from the details of .)
for attribute declarations, (in Element Sequence Locally Valid (Particle) For a sequence (possibly empty)
of element information items to be locally valid with respect to a particle 1. 2. 3. Clauses and do not
interact: an element information item validatable by a declaration with a substitution group head in a dif-
ferent namespace is not validatable by a wildcard which accepts the head's namespace but not its own.)
for element declarations.

For an attribute information item's schema-validity to have been assessed
1. A non-absent attribute declaration must be known for it, namely
A. A declaration which has been established as its context-determined declaration;

B. A declaration resolved to by itslocal name and namespace name as defined by QName resolution
(Instance) A pair of alocal name and anamespace name (or absent) resolve to aschemacomponent
of aspecified kind in the context of validation by appeal to the appropriate property of the schema
being used for the assessment. Each such property indexes components by name. The property to
use is determined by the kind of component specified, that is, 1. 2. 3. 4. 5. 6. The component
resolved to is the entry in the table whose name matches the local name of the pair and whose
target namespaceisidentical to the namespace name of the pair. , provided its context-determined
declaration is not skip.

2. ltsvalidity with respect to that declaration must have been evaluated as per Attribute Locally Valid
For an attribute information item to be locally valid with respect to an attribute declaration 1. 2. 3. 4.

3. Both and of Attribute Locally Valid For an attribute information item to be locally valid with respect
to an attribute declaration 1. 2. 3. 4. must be satisfied.

For attributes, there is no difference between assessment and strict assessment, so if the above holds, the
attribute information item has been strictly assessed.

3.2.5. Attribute Declar ation I nformation Set Contributions

sic: Assessment Outcome (Attribute)

If the schema-validity of an attribute information item has been assessed as per Schema-Validity Assessment
(Attribute) The schema-validity assessment of an attribute information item depends on its validation
alone. During validation, associations between element and attribute information itemsamong the children
and attributes on the one hand, and element and attribute declarations on the other, are established as a
side-effect. Such declarations are called the context-determined declarations. See (in) for attribute decla-
rations, (in) for element declarations. For an attribute information item's schema-validity to have been
assessed 1. 2. 3. For attributes, there is no difference between assessment and strict assessment, so if the
above holds, the attribute information item has been strictly assessed. , then in the post-schema-validation
infoset it has properties as follows:

The nearest ancestor element information item with a property.

XML Schema Part 1: Structures

Page 20 of 124 Schema Component Details

1. itwasstrictly assessed

A. itwasvalid as defined by Attribute Locally Valid For an attribute information item to be locally
valid with respect to an attribute declaration 1. 2. 3. 4.
valid;

B. invaid.

2. notKnown.

1. itwasstrictly assessed
full;
2. none.

infoset. See Attribute Default Value For each attribute use in the whose is false and whose is not absent
but whose does not match one of the attribute information itemsin the element information item's attributes
as per of above, the post-schema-validation infoset has an attribute information item whose properties are
as below added to the attributes of the element information item. local name The's . namespace name The
's. The canonical lexical representation of the effective value constraint value. The canonical lexical rep-
resentation of the effective value constraint value. The nearest ancestor element information item with a
property. valid. full. schema. The added items should also either have (and if appropriate) properties, or
their lighter-weight alternatives, as specified in . for the other possible value.

sic: Validation Failure (Attribute)

If the local validity, as defined by Attribute Locally Valid For an attribute information item to be locally
valid with respect to an attribute declaration 1. 2. 3. 4. above, of an attribute information item has been
assessed, in the post-schema-validation infoset the item has a property:

1. theitemisnot valid

a list. Applications wishing to provide information as to the reason(s) for the validation failure are
encouraged to record one or more error codes (see Appendix C — Outcome Tabulations (normative)
on page 119) herein.

2. absent.

sic: Attribute Declaration

If an attribute information item is valid with respect to an attribute declaration as per Attribute Locally
Valid For an attribute information item to be locally valid with respect to an attribute declaration 1. 2. 3.
4. then in the post-schema-validation infoset the attribute information item may, at processor option, have
a property:

An item isomorphic to the declaration component itself.

sic: AttributeValidated by Type

If of Attribute Locally Valid For an attribute information item to belocally valid with respect to an attribute
declaration 1. 2. 3. 4. applies with respect to an attribute information item, in the post-schema-validation
infoset the attribute information item has a property:

The normalized value of the item as validated.

XML Schema Part 1: Structures

Attribute Declarations Page 21 of 124

Furthermore, the item has one of the following alternative sets of properties:
Either

An item isomorphic to the relevant attribute declaration's component. If and only if that type definition
has union, then an item isomorphic to that member of its which actually validated the attribute item's
normalized value.

or

simple. The of the type definition. true if the of the type definition is absent, otherwise false. The of the
type definition, if it is not absent. If it is absent, schema processors may, but need not, provide a value
unique to the definition.

If the type definition has union, then calling that member of the which actually validated the attribute
item's normalized val ue the actual member type definition, there are three additional properties:

The of the actual member type definition. trueif the of the actual member type definition isabsent, otherwise
false. The of the actual member type definition, if it is not absent. If it is absent, schema processors may,
but need not, provide a value unique to the definition.

Thefirst (item isomorphic) alternative above is provided for applications such as query processors which
need access to the full range of details about an item's assessment, for example the type hierarchy; the
second, for lighter-weight processors for whom representing the significant parts of the type hierarchy as
information items might be a significant burden.

Also, if the declaration has a, the item has a property:

The canonical lexical representation of the declaration's value.
If the attribute information item was not strictly assessed, then instead of the values specified above,

1. Theitem's property hastheinitial value of theitem asits value;

2. Theand properties, or their alternatives, are based on the..

3.2.6. Constraints on Attribute Declar ation Schema Components

All attribute declarations (see § 3.2 — Attribute Declarations on page 16) must satisfy the following con-
straints.

cos: Attribute Declar ation Properties Correct

1. Thevaluesof the properties of an attribute declaration must be as described in the property tableau in
§ 3.2.1 — The Attribute Declaration Schema Component on page 16, modulo the impact of § 5.3 —
Missing Sub-components on page 117.

2. ifthereisa, thecanonical lexical representation of its value must be valid with respect to the as defined
in String Valid For a string to be locally valid with respect to a smple type definition 1. 2. A string is
adeclared entity nameif it is equal to the name of some unparsed entity information item in the value
of the unparsedEntities property of the document information item at the root of the infoset containing
the element or attribute information item whaose normalized value the string is. .

3. If theisorisderived from ID then there must not be a.

XML Schema Part 1: Structures

Page 22 of 124 Schema Component Details

cos. xm ns Not Allowed
The of an attribute declaration must not match xni ns.

|:| The of an attribute is an NCName, which implicitly prohibits attribute declarations of the form xm ns: *.

cos. xsi : Not Allowed

The of an attribute declaration, whether loca or top-level, must not match
http://ww. w3. or g/ 2001/ XM_Schena- i nst ance (unlessitisoneof thefour built-in declarations
given in the next section).

This reinforces the specia status of these attributes, so that they not only need not be declared to be allowed in
instances, but must not be declared. It also removes any temptation to experiment with supplying global or fixed
valuesfor e.g. xsi : t ype orxsi : ni |, which would be seriously misleading, as they would have no effect.

3.2.7. Built-in Attribute Declar ations
There are four attribute declarations present in every schema by definition:

Attribute Declaration for the 'type attribute t ype http://ww. w3. or g/ 2001/ XM_Schena-

i nst ance The built-in QName simple type definition global absent absent Attribute Declaration for the
'nil' attributeni | htt p: // ww. w3. or g/ 2001/ XM_Schena- i nst ance Thebuilt-inboolean smple
type definition global absent absent Attribute Declaration for the 'schemalocation' attribute schemalo-

cationhttp://ww. w3. or g/ 2001/ XM_Schema- i nst ance Ananonymoussimpletypedefinition,
as follows: absent htt p: / / www. w3. or g/ 2001/ XMLSchenma- i nst ance The built in absent list
The built-in anyURI simple type definition absent global absent absent Attribute Declaration for the
'noNamespaceSchemal ocation’ attribute noNanmespaceSchenmalLocati on
ht t p: // www. w3. or g/ 2001/ XM_Schena- i nst ance The built-in anyURI simple type definition
global absent absent

3.3. Element Declarations

Element declarations provide for:

» Local validation of element information item values using a type definition;
» Specifying default or fixed values for an e ement information items;

» Establishing uniquenesses and reference constraint rel ationships among the values of related elements
and attributes;

» Controlling the substitutability of elements through the mechanism of element substitution groups.

[:] <xs: el ement name="PurchaseOrder" type="PurchaseOr der Type"/>

<xs: el ement name="gift">
<xs: conpl exType>
<Xs:sequence>
<xs:el ement nane="birthday" type="xs:date"/>

XML Schema Part 1: Structures

Element Declar ations Page 23 of 124

<xs: el ement ref="PurchaseOrder"/>
</ xs: sequence>
</ xs: conpl exType>
</ xs: el enent >

XML representations of several different types of element declaration

3.3.1. The Element Declaration Schema Component
The element declaration schema component has the following properties:

An NCName as defined by [XML-Namespaces]. Either absent or anamespace name, asdefined in [XML-
Namespaces]. Either a simple type definition or a complex type definition. Optional. Either global or a
complex type definition. Optional. A pair consisting of avalue and one of default, fixed. A boolean. A set
of constraint definitions. Optional. A top-level element definition. A subset of { extension, restriction}. A
subset of { substitution, extension, restriction}. A boolean. Optional. An annotation.

The property must match the local part of the names of element information items being validated.

A of global identifies element declarations available for use in content models throughout the schema.
Locally scoped declarations are available for use only within the complex type identified by the property.
This property is absent in the case of declarations within named model groups: their scope is determined
when they are used in the construction of complex type definitions.

A non-absent value of the property provides for validation of namespace-qualified element information
items. Absent values of validate unqualified items.

An element informationitem isvalid if it satisfiesthe . For such an item, schemainformation set contribu-
tions appropriate to the are added to the corresponding element information item in the post-schema-vali-
dation infoset.

If istrue, then an element may also be valid if it carries the namespace qualified attribute with local name
ni | fromnamespace http://ww. w3. or g/ 2001/ XM_.Schena- i nst ance and valuet r ue (see
§ 2.6.2 — xsi:nil on page 12) even if it has no text or element content despite a which would otherwise
reguire content. Formal details of element validation are described in Element Locally Valid (Element)
For an element information item to be locally valid with respect to an element declaration 1. 2. 3. 4. 5. 6.
7..

establishesadefault or fixed value for an element. If default is specified, and if the element being validated
is empty, then the canonical form of the supplied constraint value becomes the of the validated element
inthe post-schema-validation infoset. If fixed is specified, then the element's content must either be empty,
in which case fixed behaves as default, or its value must match the supplied constraint value.

|:| The provision of defaults for elements goes beyond what is possiblein XML 1.0 DTDs, and does not exactly cor-
respond to defaults for attributes. In particular, an element with anon-empty whose simple type definition includes
the empty string inits lexical space will nonetheless never receive that value, because the will overrideiit.

express constraints establishing uniquenesses and reference rel ationshi ps among the values of related ele-
ments and attributes. See § 3.11 — I dentity-constraint Definitions on page 79.

Element declarations are potential members of the substitution group, if any, identified by . Potential
membership is transitive but not symmetric; an element declaration is a potential member of any group of
which itsis apotential member. Actual membership may be blocked by the effects of or , see below.

XML Schema Part 1: Structures

Page 24 of 124 Schema Component Details

An empty allows a declaration to be nominated as the of other element declarations having the same or
types derived therefrom. The explicit values of rule out element declarations having types which are
extensions or restrictions respectively of . If both values are specified, then the declaration may not be
nominated as the of any other declaration.

The supplied values for determine whether an element declaration appearing in a content model will be
prevented from additionally validating elements (a) with an § 2.6.1 — xsi:type on page 12 that identifies
an extension or restriction of the type of the declared element, and/or (b) from validating el ements which
arein the substitution group headed by the declared element. If isempty, then all derived types and substi-
tution group members are allowed.

Element declarations for which is true can appear in content models only when substitution is allowed;
such declarations may not themselves ever be used to validate element content.

See § 3.13 — Annotations on page 88 for information on the role of the property.

3.3.2. XML Representation of Element Declaration Schema Components

The XML representation for an element declaration schema component is an element information item.
It specifies atype definition for an element either by reference or explicitly, and may provide occurrence
and default information. The correspondences between the properties of theinformation item and properties
of the component(s) it corresponds to are as follows:

If the element information item has as its parent, the corresponding schema component is as follows:

Theactual value of thenane attribute. The actual value of thet ar get Nanespace attribute of the parent
element information item, or absent if there is none. global. The type definition corresponding to the or
element information item in the children, if either is present, otherwise the type definition to by the actual
value of thet ype attribute, otherwisethe of the element declaration to by the actual value of thesubst i -

t ut i onGr oup atribute, if present, otherwisethe. The actua valueof theni | | abl e attribute, if present,
otherwise false. If thereisadef aul t or afi xed attribute, then a pair consisting of the actual value
(with respect to the, if it is a simple type definition, or the's, if that is a simple type definition, or else
with respect to the built-in string simple type definition) of that attribute and either default or fixed, as
appropriate, otherwise absent. A set consisting of the identity-constraint-definitions corresponding to all
the, and element information itemsin the children, if any, otherwise the empty set. The element declaration
to by the actual value of the substituti onGroup atribute, if present, otherwise absent. A set
depending on the actual value of the bl ock attribute, if present, otherwise on the actual value of the
bl ockDef aul t attribute of the ancestor element information item, if present, otherwise on the empty
string. Call thisthe EBV (for effective block value). Then the value of this property is

1. theEBV isthe empty string
the empty set;

2. theEBVis#al |
{ extension, restriction, substitution} ;

3. aset with members drawn from the set above, each being present or absent depending on whether the
actual value (which isalist) contains an equivalently named item.

Althoughthebl ockDef aul t attribute of may include values other than extension, restriction or substi-
tution, those values areignored in the determination of for element declarations (they are used el sewhere).

XML Schema Part 1: Structures

Element Declar ations Page 25 of 124

Asfor above, butusingthef i nal andfi nal Def aul t attributesin place of thebl ock and bl ockDe-
faul t atributesand with therelevant set being { extension, restriction} . The actual value of theabst r act
atribute, if present, otherwise false. The annotation corresponding to the element information item in the
children, if present, otherwise absent.

otherwise if the element information item has or as an ancestor and ther ef attribute is absent, the corre-
sponding schema components are as follows (unless m nCccur s=maxCccur s=0, in which case the
item corresponds to no component at all):

The actual value of the m nGccur s attribute, if present, otherwise 1. unbounded, if the maxCccur s
attribute equals unbounded, otherwise the actual value of the maxQccur s attribute, if present, otherwise
1. A (local) element declaration as given below.

An element declaration as in the first case above, with the exception of its and properties, which are as
below:

If f or mis present and its actual valueisqual i fi ed, orif f or misabsent and the actual value of el e-

nment For nDef aul t ontheancestorisqual i fi ed, then the actual value of thet ar get Namespace
attribute of the parent element information item, or absent if thereis none, otherwise absent. If the element
information item has as an ancestor, the complex definition corresponding to that item, otherwise (the
element information item is within a named definition), absent.

otherwise (the element information item has or as an ancestor and ther ef attributeis present), the corre-
sponding schema component is as follows (unlessmi nOccur s=maxCccur s=0, in which case theitem
corresponds to no component at all):

The actual value of the m nGCccur s attribute, if present, otherwise 1. unbounded, if the maxCccur s
attribute equals unbounded, otherwise the actual value of the maxQccur s attribute, if present, otherwise
1. The (top-level) element declaration to by the actual value of ther ef attribute.

corresponds to an element declaration, and allows the type definition of that declaration to be specified
either by reference or by explicit inclusion.

s within produce global element declarations; s within or produce either particles which contain global
element declarations (if there'sar ef attribute) or local declarations (otherwise). For complete declarations,
top-level or local, thet ype attribute is used when the declaration can use a built-in or pre-declared type
definition. Otherwise an anonymous or is provided inline.

Element information itemsvalidated by atop-level declaration must be qualified with the of that declaration
(if thisis absent, the item must be unqualified). Control over whether element information items validated
by alocal declaration must be similarly qualified or not is provided by the f or mattribute, whose default
isprovided by the el enent For nDef aul t attribute on the enclosing , viaits determination of .

As noted above the names for top-level element declarations are in a separate symbol space from the
symbol spaces for the names of type definitions, so there can (but need not be) a simple or complex type
definition with the same name asatop-level element. Aswith attribute names, the names of locally-scoped
element declarations with no reside in symbol spaces local to the type definition which contains them.

Note that the above allows for two levels of defaulting for unspecified type definitions. An with no refer-
enced or included type definition will correspond to an element declaration which has the same type defi-
nition as the head of its substitution group if it identifies one, otherwise the ur-type definition. This has
the important consequence that the minimum valid element declaration, that is, one with only a nane
attribute and no contents, is also (nearly) the most general, validating any combination of text and element
content and allowing any attributes, and providing for recursive validation where possible.

See below at § 3.11.2 — XML Representation of Identity-constraint Definition Schema Components on
page 80 for , and .

XML Schema Part 1: Structures

Page 26 of 124 Schema Component Details

[]

<xs: el enent nanme="unconstrai ned"/>

<xs: el ement nanme="enptyEl t">
<xs: conpl exType>
<xs:attribute ...> . .</xs:attribute>
</ xs: conpl exType>
</ xs: el ement >

<xs: el ement name="cont ext One" >
<xs: conpl exType>
<Xs:sequence>
<xs: el ement name="nyLocal El enent" type="nyFirstType"/>
<xs: el ement ref="gl obal El enent"/>
</ xs: sequence>
</ xs: conpl exType>
</ xs: el ement >

<xs: el ement name="cont ext Two" >
<xs: conpl exType>
<Xs: sequence>
<xs:el ement nane="nyLocal El ement" type="nmySecondType"/>
<xs: el ement ref="gl obal El enent"/>
</ xs: sequence>
</ xs: conpl exType>
</ xs: el ement >

The first example above declares an element whose type, by default, is the ur-type definition. The second uses an
embedded anonymous complex type definition.

The last two examples illustrate the use of local element declarations. Instances of myLocal El enent within
cont ext One will be constrained by myFi r st Type, while those within cont ext Two will be constrained by
nySecondType.

The possibility that differing attribute declarations and/or content models would apply to elements with the same
name in different contextsis an extension beyond the expressive power of aDTD in XML 1.0.

<xs: conpl exType nane="facet">
<xs: conpl exCont ent >
<xs: extension base="xs:annot at ed" >
<xs:attribute name="val ue" use="required"/>
</ xs: ext ensi on>
</ xs: conmpl exCont ent >
</ xs: conpl exType>

<xs:el ement nane="facet" type="xs:facet" abstract="true"/>

<xs: el ement nane="encodi ng" substitutionG oup="xs:facet">
<xs: conpl exType>
<xs: conpl exCont ent >
<xs:restriction base="xs:facet">
<Xs: sequence>
<xs: el ement ref="annotation" m nCccurs="0"/>

XML Schema Part 1: Structures

Element Declar ations Page 27 of 124

</ xs: sequence>
<xs:attribute name="val ue" type="xs:encodi ngs"/>
</xs:restriction>
</ xs: conmpl exCont ent >
</ xs: conpl exType>
</ xs: el enent >

<xs:el ement nane="period" substitutionG oup="xs:facet">
<xs: conpl exType>
<xs: conpl exCont ent >
<xs:restriction base="xs:facet">
<Xs:sequence>
<xs:el ement ref="annotation" m nCccurs="0"/>
</ xs: sequence>
<xs:attribute name="val ue" type="xs:duration"/>
</xs:restriction>
</ xs: conmpl exCont ent >
</ xs: conpl exType>
</ xs: el enent >

<xs:conpl exType nanme="dat at ype" >
<XS: sequence>
<xs: el ement ref="facet" m nCccurs="0" maxCccur s="unbounded"/ >
</ xs: sequence>
<xs:attribute name="name" type="xs: NCNane" use="optional"/>

</ xs: conpl exType>

An examplefrom apreviousversion of the schemafor datatypes. Thef acet typeisdefined andthef acet element
isdeclared to useit. Thef acet element isabstract -- it's only defined to stand as the head for a substitution group.
Two further elements are declared, each amember of thef acet substitution group. Finally atypeisdefined which
referstof acet , thereby allowing either peri od or encodi ng (or any other member of the group).

3.3.3. Constraintson XML Representations of Element Declarations

src. Element Declaration Representation OK
In addition to the conditions imposed on element information items by the schema for schemas:

1. default andfi xed must not both be present.
2. If theitem's parentisnot , then

A. Oneof ref or nane must be present, but not both.

B. If ref ispresent, thenal of ,,,,,nillable, default,fixed,formbl ock andtype
must be absent, i.e. only mi nOccur s, maxQccur s, i d are allowed in addition to r ef , along
with .

t ype and either or are mutually exclusive.

4. The corresponding particle and/or el ement declarations must satisfy the conditions set out in § 3.3.6 —
Constraints on Element Declaration Schema Components on page 36 and § 3.9.6 — Constraints on
Particle Schema Components on page 68.

XML Schema Part 1: Structures

Page 28 of 124 Schema Component Details

3.3.4. Element Declaration Validation Rules

cvc: Element Locally Valid (Element)
For an element information item to be locally valid with respect to an element declaration

1. Thedeclaration must not be absent.
2. ltsmust befase.
3. A. isfase

there must be no attribute information iterm among the element information item's attributes whose
namespace nameisidentical toht t p: / / www. w3. or g/ 2001/ XM_Schema- i nst ance and
whose local nameisni | .

B. istrue and thereis such an attribute information item and its actual valueist r ue
i. Theeé&ement information item must have no character or element information item children.

ii. There must be no fixed .

4, |If there is an attribute information item among the element information item's attributes whose
namespace nameisidentical toht t p: / / www. W3. or g/ 2001/ XM_Schena- i nst ance andwhose
local nameist ype, then

A. Thenormalized value of that attribute information item must be valid with respect to the built-in
QName ssimple type, as defined by String Valid For a string to be locally valid with respect to a
simple type definition 1. 2. A string is a declared entity name if it is equal to the name of some
unparsed entity information item in the value of the unparsedEntities property of the document
information item at the root of the infoset containing the element or attribute information item
whose normalized value the string is. ;

B. Thelocal name and namespace name (as defined in QName Interpretation Where the type of an
attribute information item in a document involved in validation is identified as QName, its actual
value is composed of alocal name and a namespace name. Its actual value is determined based
on its normalized value and the containing element information item's in-scope namespaces fol-
lowing : 1. 2. In the absence of the in-scope namespaces property in the infoset for the schema
document in question, processors must reconstruct equivalent information as necessary, using the
namespace attributes of the containing element information item and its ancestors.), of the actual
value of that attribute information item must resolve to a type definition, as defined in QName
resolution (Instance) A pair of alocal name and a namespace name (or absent) resolve to aschema
component of a specified kind in the context of validation by appeal to the appropriate property
of the schema being used for the assessment. Each such property indexes components by name.
The property to useis determined by the kind of component specified, that is, 1. 2. 3. 4. 5. 6. The
component resolved to is the entry in the table whose name matches the local name of the pair
and whose target namespace is identical to the namespace name of the pair. -- call this type defi-
nition the local type definition;

C. Thelocal type definition must be validly derived from the given the union of the and the''s , as
defined in Type Derivation OK (Complex) For a complex type definition (call it D, for derived)
to be validly derived from a type definition (call this B, for base) given a subset of { extension,
restriction} 1. 2. (if it is a complex type definition), or given as defined in Type Derivation OK
(Simple) For a simple type definition (call it D, for derived) to be validly derived from a type

XML Schema Part 1: Structures

Element Declar ations Page 29 of 124

definition (call this B, for base) given a subset of { extension, restriction, list, union} (of which
only restriction is actually relevant) 1. 2. (if it is a simple type definition).

The phrase actual type definition occurs below. If the above three clauses are satisfied, this should be
understood as referring to the local type definition, otherwise to the .

5. A. thedeclaration hasa, theitem has neither element nor character children and has not applied

i. If theactual type definitionisalocal type definition then the canonical lexical representation
of thevalue must be avalid default for the actual type definition asdefined in Element Default
Valid (Immediate) For a string to be a valid default with respect to atype definition 1. 2. .

ii. The element information item with the canonical lexical representation of the value used as
its normalized value must be valid with respect to the actual type definition as defined by
Element Locally Valid (Type) For an element information item to belocally valid with respect
to atype definition 1. 2. 3. .

B. the declaration has no or the item has either element or character children or has applied

i. Thedementinformationitem must bevalid with respect to the actual type definition as defined
by Element Localy Valid (Type) For an element information item to be locally valid with
respect to atype definition 1. 2. 3. .

ii. If thereisafixed and has not applied,
a) Thedement information item must have no element information item children.
b) 1) theof theactua type definition is mixed

the initial value of the item must match the canonical lexical representation of the
value.

2) theof the actual type definition is asimple type definition

the actual value of the item must match the canonical lexical representation of the
value.

6. Theelement information item must be valid with respect to each of the as per |dentity-constraint Sat-
isfied For an element information item to be locally valid with respect to an identity-constraint 1. 2.
3. 4. The use of schema normalized value in the definition of key sequence above means that default
or fixed value constraints may play apart in key sequences. .

7. If the element information item is the validation root, it must be valid per Validation Root Valid
(ID/IDREF) For an element information item which is the validation root to be valid 1. 2. Seefor the
definition of ID/IDREF binding. Thefirst clause above applieswhen thereisareference to an undefined
ID. The second applies when there is a multiply-defined 1D. They are separated out to ensure that
distinct error codes (see) are associated with these two cases. Although thisrule applies at the validation
root, in practice processors, particularly streaming processors, may wish to detect and signal the case
asit arises. Thisreconstruction of 's ID/IDREF functionality isimperfect in that if the validation root
isnot the document element of an XML document, the resultswill not necessarily be the same asthose
avalidating parser would give were the document to have a DTD with equivalent declarations. .

XML Schema Part 1: Structures

Page 30 of 124 Schema Component Details

cvc: Element Locally Valid (Type)
For an element information item to be locally valid with respect to a type definition

1. Thetype definition must not be absent;
2. It must not have with value true.
3. A. thetype definitionisasimple type definition

i. Theeement information item'’s attributes must be empty, excepting those whose namespace
nameisidentical tohtt p: / / www. W3. or g/ 2001/ XM_Schena- i nst ance and whose
local nameisoneoft ype,ni | ,schenmalLocat i on ornoNanespaceSchenalLocat i on.

ii. Theeement information item must have no e ement information item children.

iii. If of Element Locally Valid (Element) For an element information item to be locally valid
with respect to an element declaration 1. 2. 3. 4. 5. 6. 7. did not apply, then the normalized
value must be valid with respect to the type definition as defined by String Valid For a string
to be locally valid with respect to a ssimple type definition 1. 2. A string is a declared entity
name if it is equal to the name of some unparsed entity information item in the value of the
unparsedEntities property of the document information item at the root of the infoset containing
the element or attribute information item whaose normalized value the string is. .

B. thetype definition is acomplex type definition

the element information item must be valid with respect to the type definition as per Element
Locally Valid (Complex Type) For an element information item to be locally valid with respect
toacomplex typedefinition 1. 2. 3. 4. 5. When an is present, this does not introduce any ambiguity
with respect to how attribute information items for which an attribute use is present amongst the
whose name and target namespace match are assessed. |n such cases the attribute use alwaystakes
precedence, and the assessment of such items stands or falls entirely on the basis of the attribute
use and its . This follows from the details of . ;

cvc: Validation Root Valid (ID/IDREF)
For an element information item which is the validation root to be valid

1. There must be no ID/IDREF binding in the item's whose is the empty set.

2. There must be no ID/IDREF binding in the item’'s whose has more than one member.

See ID/IDREF Table In the post-schema-validation infoset a set of |D/IDREF binding information items
is associated with the validation root element information item: A (possibly empty) set of ID/IDREF
binding information items, as specified below. Let the eligible item set be the set of consisting of every
attribute or element information item for which 1. 2. Then there is one ID/IDREF binding in the for every
distinct string whichis 1. 2. Each ID/IDREF binding has propertiesasfollows: The string identified above.
A set consisting of every element information item for which 1. 2. The net effect of the above is to have
one entry for every string used as an id, whether by declaration or by reference, associated with those
elements, if any, which actually purport to have that id. See above for the validation rule which actually
checksfor errors here. The ID/IDREF binding information item, unlike most other aspects of this specifi-
cation, is essentially an internal bookkeeping mechanism. It is introduced to support the definition of
above. Accordingly, conformant processors may, but are not required to, expose it in the post-schema-

XML Schema Part 1: Structures

Element Declar ations Page 31 of 124

validation infoset. In other words, the above constraint may be read as saying assessment proceeds as if
such an infoset item existed. for the definition of 1D/IDREF binding.

|:| The first clause above applies when there is a reference to an undefined ID. The second applies when there is a
multiply-defined ID. They are separated out to ensure that distinct error codes (see Appendix C — Outcome Tabu-
lations (normative) on page 119) are associated with these two cases.

Although thisrule appliesat the validation root, in practice processors, particularly streaming processors, may wish
to detect and signal the case asiit arises.

Thisreconstruction of [XML 1.0 (Second Edition)]'s| D/ | DREF functionality isimperfect in that if the validation
root is not the document element of an XML document, the results will not necessarily be the same as those aval-
idating parser would give were the document to have a DTD with equivalent declarations.

cvc: Schema-Validity Assessment (Element)

The schema-validity assessment of an e ement information item depends on itsvalidation and the assessment
of its element information item children and associated attribute information items, if any.

So for an element information item's schema-validity to be assessed
1. A. i. A non-absent element declaration must be known for it, because

a) A declaration was stipulated by the processor (see § 5.2 — Assessing Schema-Validity on
page 116).

b) A declaration has been established as its context-determined declaration.
c) 1) Itscontext-determined declaration is not skip.

2) Itslocal name and namespace name resolve to an element declaration as defined by
QNameresolution (Instance) A pair of alocal name and anamespace name (or absent)
resolve to a schema component of a specified kind in the context of validation by
appeal to the appropriate property of the schema being used for the assessment. Each
such property indexes components by name. The property to useis determined by the
kind of component specified, that is, 1. 2. 3. 4. 5. 6. The component resolved to isthe
entry in the table whose name matches the local name of the pair and whose target
namespace is identical to the namespace name of the pair. .

ii. Itsvalidity with respect to that declaration must have been evaluated as per Element Locally
Valid (Element) For an element information item to belocally valid with respect to an element
declaration1.2.3.4.5.6. 7..

iii. If that evaluation involved the evaluation of Element Locally Valid (Type) For an element
information item to be locally valid with respect to atype definition 1. 2. 3., thereof must be
satisfied.

B. i. A non-absent type definition is known for it because

a) A type definition was stipulated by the processor (see 8 5.2 — Assessing Schema-Validity
on page 116).

XML Schema Part 1: Structures

Page 32 of 124

b) 1)

2)

3)

4)

Schema Component Details

Thereisan attribute information item among the element information item's attributes
whose hamespace nameisidentical toht t p: / / waww. wW3. or g/ 2001/ XM_Schera-
i nst ance and whose local nameist ype.

The normalized value of that attribute information item is valid with respect to the
built-in QName simple type, as defined by String Valid For astring to be locally valid
with respect to asimple type definition 1. 2. A string is a declared entity nameif itis
equal to the name of some unparsed entity information item in the value of the
unparsedEntities property of the document information item at the root of the infoset
containing the element or attribute information item whose normalized value the string
is. .

Theloca name and namespace name (as defined in QName I nterpretation Where the
type of an attribute information itemin adocument involved in validation isidentified
as QName, its actual value is composed of alocal hame and a namespace name. Its
actual value is determined based on its normalized value and the containing element
information item'sin-scope namespacesfollowing : 1. 2. In the absence of thein-scope
namespaces property in the infoset for the schema document in question, processors
must reconstruct equival ent information as necessary, using the namespace attributes
of the containing element information item and its ancestors.), of the actual value of
that attribute information item resolve to atype definition, as defined in QName reso-
lution (Instance) A pair of alocal name and a namespace name (or absent) resolve to
a schema component of a specified kind in the context of validation by appeal to the
appropriate property of the schema being used for the assessment. Each such property
indexes components by name. The property to use is determined by the kind of com-
ponent specified, that is, 1. 2. 3. 4. 5. 6. The component resolved to isthe entry in the
table whose name matches the local name of the pair and whose target namespace is
identical to the namespace name of the pair. -- call this type definition the local type
definition.

If there is also a processor-stipulated type definition, the local type definition must
be validly derived from that type definition given its, as defined in Type Derivation
OK (Complex) For a complex type definition (cal it D, for derived) to be validly
derived from a type definition (cal this B, for base) given a subset of {extension,
restriction} 1. 2. (if it isacomplex type definition), or given the empty set, as defined
in Type Derivation OK (Simple) For a ssmple type definition (call it D, for derived)
to be validly derived from a type definition (call this B, for base) given a subset of
{extension, restriction, list, union} (of which only restriction is actually relevant) 1.
2. (if itisasimple type definition).

The element information item's validity with respect to the local type definition (if present
and validly derived) or the processor-stipulated type definition (if no local type definition is
present) has been evaluated as per Element Locally Valid (Type) For an e ement information
item to be locally valid with respect to atype definition 1. 2. 3. .

2. Theschemavalidity of al the element information items among its children has been assessed as per
Schema-Validity Assessment (Element) The schema-validity assessment of an element information
item depends on itsvalidation and the assessment of its element information item children and associ ated
attributeinformation items, if any. So for an el ement information item's schemarvalidity to be assessed
1. 2. If either case of above holds, the element information item has been strictly assessed. If theitem

XML Schema Part 1: Structures

Element Declar ations Page 33 of 124

cannot be strictly assessed, because neither nor above are satisfied, an element information item's
schema validity may be laxly assessed if its context-determined declaration is not skip by validating
with respect to the ur-type definition as per . In genera if above holds does not, and vice versa. When
an xsi:type attribute is involved, however, takes precedence, as is made clear in . , and the schema-
validity of al the attribute information items among its attributes has been assessed as per Schema-
Validity Assessment (Attribute) The schema-validity assessment of an attribute information item
depends on its validation alone. During validation, associations between element and attribute infor-
mation items among the children and attributes on the one hand, and element and attribute declarations
on the other, are established as a side-effect. Such declarations are called the context-determined
declarations. See (in) for attribute declarations, (in) for element declarations. For an attribute infor-
mation item's schema-validity to have been assessed 1. 2. 3. For attributes, there is no difference
between assessment and strict assessment, so if the above holds, the attribute information item has
been strictly assessed. .

If either case of above holds, the element information item has been strictly assessed.

If the item cannot be strictly assessed, because neither nor above are satisfied, an element information
item's schemavalidity may belaxly assessed if its context-determined declaration isnot skip by validating
with respect to the as per Element Locally Valid (Type) For an element information item to be locally
valid with respect to atype definition 1. 2. 3. .

|:| In genera if above holds does not, and vice versa. When an xsi : t ype attribute is involved, however, takes
precedence, as is made clear in Element Locally Valid (Element) For an element information item to be locally
valid with respect to an element declaration 1. 2. 3. 4. 5. 6. 7. .

|:| The and properties are not mentioned above because they are checked during particle validation, as per Element
Sequence Locally Valid (Particle) For a sequence (possibly empty) of element information itemsto belocally valid
with respect toaparticle 1. 2. 3. Clausesand do not interact: an element information item validatable by adeclaration
with a substitution group head in a different namespace is not validatable by a wildcard which accepts the head's
namespace but not its own. .

3.3.5. Element Declaration Infor mation Set Contributions

sic: Assessment Outcome (Element)

If the schema-validity of an element information item has been assessed as per Schema-Validity Assessment
(Element) The schema-validity assessment of an element information item depends on its validation and
the assessment of its element information item children and associated attribute information items, if any.
So for an element information item's schema-validity to be assessed 1. 2. If either case of above holds, the
element information item has been strictly assessed. If the item cannot be strictly assessed, because neither
nor above are satisfied, an e ement information item's schema validity may be laxly assessed if its context-
determined declaration is not skip by validating with respect to the ur-type definition as per . In general if
above holds does not, and vice versa. When an xsi:type attribute is involved, however, takes precedence,
asismadeclear in ., then in the post-schema-validation infoset it has properties as follows:

The nearest ancestor element information item with a property (or this element item itself if it hassuch a
property).
1. itwassdtrictly assessed

XML Schema Part 1: Structures

Page 34 of 124

A.i. a

b)

Schema Component Details

of Schema-Validity Assessment (Element) The schema-validity assessment of an element
information item depends on its validation and the assessment of its element information
item children and associated attribute information items, if any. So for an element infor-
mation item's schema-validity to be assessed 1. 2. If either case of above holds, the element
information item has been strictly assessed. If theitem cannot be strictly assessed, because
neither nor above are satisfied, an element information item's schema validity may be
laxly assessed if its context-determined declaration is not skip by validating with respect
to the ur-type definition as per . In general if above holds does not, and vice versa. When
an xsi:type attribute is involved, however, takes precedence, asis made clear in . applied
and the item was valid as defined by Element Locally Valid (Element) For an element
information item to be locally valid with respect to an element declaration 1. 2. 3. 4. 5. 6.
7.;

of Schema-Validity Assessment (Element) The schema-validity assessment of an element
information item depends on its validation and the assessment of its element information
item children and associated attribute information items, if any. So for an element infor-
mation item's schema-validity to be assessed 1. 2. I either case of above holds, the element
information item has been strictly assessed. If theitem cannot be strictly assessed, because
neither nor above are satisfied, an element information item's schema validity may be
laxly assessed if its context-determined declaration is not skip by validating with respect
to the ur-type definition as per . In general if above holds does not, and vice versa. When
an xsi:type attribute is involved, however, takes precedence, asis made clear in . applied
and the item was valid as defined by Element Localy Valid (Type) For an element
information item to be locally valid with respect to atype definition 1. 2. 3. .

ii. Neither its children nor its attributes contains an information item (element or attribute
respectively) whose vaidity isinvalid.

iii. Neither its children nor its attributes contains an information item (element or attribute
respectively) with a context-determined declaration of mustFind whose validity is notK nown.

valid;

B. invalid.

2. notKnown.

1. itwasstrictly assessed and neither its children nor its attributes contains an information item (element
or attribute respectively) whose validation attempted is not full

full;

2. it was not strictly assessed and neither its children nor its attributes contains an information item
(element or attribute respectively) whose validation attempted is not none

Nnone;

3. partial.

sic: Validation Failure (Element)

If the local validity, as defined by Element Locally Valid (Element) For an element information item to
be locally valid with respect to an element declaration 1. 2. 3. 4. 5. 6. 7. above and/or Element Locally

XML Schema Part 1: Structures

Element Declar ations Page 35 of 124

Valid (Type) For an element information item to be locally valid with respect to atype definition 1. 2. 3.
below, of an element information item has been assessed, in the post-schema-validation infoset the item
has a property:

1. theitemisnot valid

a list. Applications wishing to provide information as to the reason(s) for the validation failure are
encouraged to record one or more error codes (see Appendix C — Outcome Tabulations (normative)
on page 119) herein.

2. absent.

sic: Element Declaration

If an element information item isvalid with respect to an element declaration as per Element Locally Valid
(Element) For an element information item to be locally valid with respect to an element declaration 1. 2.
3. 4. 5. 6. 7. then in the post-schema-validation infoset the element information item must, at processor
option, have either:

an item isomorphic to the declaration component itself
or

trueif of Element Locally Valid (Element) For an element information item to belocally valid with respect
to an element declaration 1. 2. 3. 4. 5. 6. 7. above is satisfied, otherwise false

sic: Element Validated by Type

If an element information item is valid with respect to a type definition as per Element Localy Valid
(Type) For an element information item to be locally valid with respect to atype definition 1. 2. 3., in the
post-schema-validation infoset the item has a property:

1. of Element Locally Valid (Element) For an element information item to be locally valid with respect
to an element declaration 1. 2. 3. 4. 5. 6. 7. and Element Default Value If the local validity, as defined
by above, of an element information item has been assessed, in the post-schema-validation infoset the
item hasaproperty: 1. 2. above have not applied and either the type definition isasimple type definition
or itsisasimple type definition

the normalized value of the item as validated.
2. absent.
Furthermore, the item has one of the following alternative sets of properties:
Either

An item isomorphic to the type definition component itself. If and only if that type definition isasimple
type definition with union, or acomplex type definition whoseis a simple type definition with union, then
an item isomorphic to that member of the union's which actually validated the element item's normalized
value.

or

simple or complex, depending on the type definition. The target namespace of the type definition. true if
the name of thetype definition isabsent, otherwisefalse. The name of thetype definition, if itisnot absent.
If it is absent, schema processors may, but need not, provide a value unique to the definition.

XML Schema Part 1: Structures

Page 36 of 124 Schema Component Details

If the type definition is a simple type definition or itsis a simple type definition, and that type definition
has union, then calling that member of the which actually validated the element item's normalized value
the actual member type definition, there are three additional properties:

The of the actual member type definition. trueif the of the actual member type definition isabsent, otherwise
false. The of the actual member type definition, if it is not absent. If it is absent, schema processors may,
but need not, provide a value unique to the definition.

Thefirst (item isomorphic) alternative above is provided for applications such as query processors which
need access to the full range of details about an item's assessment, for example the type hierarchy; the
second, for lighter-weight processors for whom representing the significant parts of the type hierarchy as
information items might be a significant burden.

Also, if the declaration has a, the item has a property:

The canonical lexical representation of the declaration's value.
Note that if an element islaxly assessed, then the and properties, or their alternatives, are based on the .

sic: Element Default Value

If the local validity, as defined by Element Locally Valid (Element) For an element information item to
belocally valid with respect to an element declaration 1. 2. 3. 4. 5. 6. 7. above, of an element information
item has been assessed, in the post-schema-validation infoset the item has a property:

1. theitemisvalid with respect to an element declaration as per Element Localy Valid (Element) For
an element information item to be locally valid with respect to an element declaration 1. 2. 3. 4. 5. 6.
7. and the is present, but of Element Locally Valid (Element) For an element information item to be
locally valid with respect to an element declaration 1. 2. 3. 4. 5. 6. 7. above is not satisfied and the
item has no element or character information item children

schema. Furthermore, the post-schema-validation infoset has the canonical lexical representation of
the value as the item's property.

2. infoset.

3.3.6. Constraints on Element Declaration Schema Components

All dlement declarations (see § 3.3 — Element Declarations on page 22) must satisfy thefollowing constraint.

cos. Element Declar ation Properties Correct

1. Thevaluesof the properties of an element declaration must be as described in the property tableau in
§ 3.3.1 — The Element Declaration Schema Component on page 23, modulo the impact of § 5.3 —
Missing Sub-components on page 117.

2. Ifthereisa, thecanonical lexical representation of itsvalue must be valid with respect to the as defined
in Element Default Valid (Immediate) For astring to be avalid default with respect to atype definition
1.2..

If there is anon-absent , then must be global.

If thereisa, the of the element declaration must be validly derived from the of the , given the value
of the of the, as defined in Type Derivation OK (Complex) For a complex type definition (call it D,
for derived) to be validly derived from a type definition (call this B, for base) given a subset of

XML Schema Part 1: Structures

Element Declar ations Page 37 of 124

{extension, restriction} 1. 2. (if the is complex) or as defined in Type Derivation OK (Simple) For a
simple type definition (call it D, for derived) to be validly derived from a type definition (call this B,
for base) given a subset of {extension, restriction, list, union} (of which only restriction is actually
relevant) 1. 2. (if theissimple).

5. If theor'sisorisderived from ID then there must not be a.

Theuseof ID asatype definition for elements goes beyond XML 1.0, and should be avoided if backwards
compatibility is desired.

6. Circular substitution groups are disallowed. That is, it must not be possible to return to an element
declaration by repeatedly following the property.

The following constraints define relations appeal ed to el sewhere in this specification.

cos. Element Default Valid (Immediate)
For astring to be avalid default with respect to atype definition

1. thetype definition isasimple type definition

the string must be valid with respect to that definition as defined by String Valid For a string to be
locally valid with respect to a simple type definition 1. 2. A string is a declared entity name if it is
equa to the name of some unparsed entity information item in the value of the unparsedEntities
property of the document information item at the root of the infoset containing the element or attribute
information item whose normalized value the string is. .

2. thetype definition is a complex type definition
A. itsmust be asimple type definition or mixed.
B. i. theisasimpletype definition

the string must be valid with respect to that smple type definition as defined by String Valid
For astring to belocally valid with respect to asimpletype definition 1. 2. A string isadeclared
entity name if it is equal to the name of some unparsed entity information item in the value
of the unparsedEntities property of the document information item at the root of the infoset
containing the element or attribute information item whose normalized value the string is. .

ii. theismixed
the's particle must be emptiabl e as defined by Particle Emptiable For aparticleto be emptiable
1.2..

cos: Substitution Group OK (Transitive)

For an element declaration (cal it D) to be validly substitutable for another element declaration (call it C)
subject to ablocking constraint (a subset of { substitution, extension, restriction}, the value of a)

1. D and C are the same element declaration.
2. A. Theblocking constraint does not contain substitution.

B. Thereisachain of sfrom D to C, that is, either D'sisC, or D's'sisC, or ...

XML Schema Part 1: Structures

Page 38 of 124 Schema Component Details

C. Theset of dl sinvolved in the derivation of D's from C's does not intersect with the union of the
blocking constraint, C's (if Ciscomplex, otherwise the empty set) and the (respectively the empty
set) of any intermediate sin the derivation of D'sfrom C's.

cos: Substitution Group

Every element declaration (call this HEAD) in the of a schema defines a substitution group, a subset of
those, asfollows:

Define B, the potential substitution group for HEAD, asfollows:
1. Theelement declaration itself isin P;

2. Pisclosed with respect to, that is, if any element declaration in the has ain P, then that element is
dsoinPitself.

HEAD's actual substitution group is then the set consisting of each member of P such that
1. Itsisfase

2. ltisvalidly substitutable for HEAD subject to HEAD's as the blocking constraint, as defined in Sub-
stitution Group OK (Transitive) For an element declaration (call it D) to be validly substitutable for
another element declaration (call it C) subject to a blocking constraint (a subset of {substitution,
extension, restriction}, thevalueof a) 1. 2. .

3.4. Complex Type Definitions
Complex Type Definitions provide for:

e Constraining element information items by providing § 2.2.2.3 — Attribute Declaration on page 7s
governing the appearance and content of attributes

» Constraining element information item children to be empty, or to conform to a specified element-only
or mixed content model, or else constraining the character information item children to conform to a
specified simple type definition.

» Using the mechanisms of § 2.2.1.1 — Type Definition Hierarchy on page 5 to derive a complex type
from another simple or complex type.

e Specifying post-schema-validation infoset contributions for elements.
» Limiting the ability to derive additional types from a given complex type.

» Contralling the permission to substitute, in an instance, elements of aderived typefor el ementsdeclared
in a content model to be of a given complex type.

[:] <xs: conpl exType nane="Pur chaseOr der Type" >
<Xs:sequence>
<xs: el ement name="shi pTo" type="USAddress"/>
<xs:element nane="bill To" type="USAddress"/>
<xs:el ement ref="comrent" mi nQccurs="0"/>
<xs:element nane="itens" type="Itens"/>
</ xs: sequence>

XML Schema Part 1: Structures

Complex Type Definitions Page 39 of 124

<xs:attribute name="orderDate" type="xs:date"/>
</ xs: conpl exType>

The XML representation of a complex type definition.

3.4.1. The Complex Type Definition Schema Component
A complex type definition schema component has the following properties:

Optional. An NCName as defined by [XM L-Namespaces]. Either absent or anamespace name, as defined
in [XML-Namespaces]. Either a simple type definition or a complex type definition. Either extension or
restriction. A subset of {extension, restriction}. A boolean A set of attribute uses. Optional. A wildcard.
One of empty, a simple type definition or a pair consisting of a content model (I.e. a § 2.2.3.2 — Particle
on page 8) and one of mixed, element-only. A subset of { extension, restriction}. A set of annotations.
Complex types definitions are identified by their and . Except for anonymous complex type definitions
(thosewith no), since type definitions (i.e. both ssimple and compl ex type definitions taken together) must
be uniquely identified within an XML Schema, no complex type definition can have the same name as
another simple or complex type definition. Complex type sand s are provided for reference from instances
(see § 2.6.1 — xsi:type on page 12), and for use in the XML representation of schema components
(specifically in). See § 4.2.3 — References to schema components across namespaces on page 110 for the
use of component identifiers when importing one schema into another.

|:| The of acomplex typeisnot ipso facto the (local) name of the element information items validated by that definition.
The connection between aname and a type definition is described in § 3.3 — Element Declarations on page 22.

As described in § 2.2.1.1 — Type Definition Hierarchy on page 5, each complex type is derived from a
which is itself either a § 2.2.1.2 — Simple Type Definition on page 6 or a § 2.2.1.3 — Complex Type
Definition on page 6. specifies the means of derivation as either extension or restriction (see § 2.2.1.1 —
Type Definition Hierarchy on page 5).

A complex type with an empty specification for can be used as a for other types derived by either of
extension or restriction; the explicit values extension, and restriction prevent further derivations by
extension and restriction respectively. If all values are specified, then the complex typeis said to befinal,
because no further derivations are possible. Finality is not inherited, that is, a type definition derived by
restriction from a type definition which is final for extension is not itself, in the absence of any explicit
final attribute of its own, final for anything.

Complex types for which is true must not be used as the for the validation of element information items.
It follows that they must not be referenced from an § 2.6.1 — xsi:type on page 12 attribute in an instance
document. Abstract complex types can be used as s, or even as the s of element declarations, provided in
every case aconcrete derived type definition is used for validation, either via§ 2.6.1 — xsi:type on page 12
or the operation of a substitution group.

are a set of attribute uses. See Element Locally Valid (Complex Type) For an element information item
to belocally valid with respect to a complex type definition 1. 2. 3. 4. 5. When an is present, this does not
introduce any ambiguity with respect to how attribute information items for which an attribute use is
present amongst the whose name and target namespace match are assessed. In such cases the attribute use
always takes precedence, and the assessment of such items stands or falls entirely on the basis of the
attribute use and its . This follows from the details of . and Attribute Locally Valid For an attribute infor-
mation item to be locally valid with respect to an attribute declaration 1. 2. 3. 4. for details of attribute
validation.

XML Schema Part 1: Structures

Page 40 of 124 Schema Component Details

s provide a more flexible specification for validation of attributes not explicitly included in . Informally,
the specific values of are interpreted as follows:

» any: attributes can include attributes with any qualified or unqualified name.

* aset whose membersare either namespace names or absent: attributes can include any attribute(s) from
the specified namespace(s). If absent is included in the set, then any unqualified attributes are (also)
allowed.

» 'not' and a namespace name: attributes cannot include attributes from the specified namespace.
* 'not' and absent: attributes cannot include unqualified attributes.

See Element Locally Valid (Complex Type) For an element information item to be locally valid with
respect to acomplex type definition 1. 2. 3. 4. 5. When an is present, this does not introduce any ambiguity
with respect to how attribute information items for which an attribute use is present amongst the whose
name and target namespace match are assessed. In such cases the attribute use always takes precedence,
and the assessment of such itemsstands or fallsentirely on the basis of the attribute use and its . Thisfollows
from the details of . and Wildcard allows Namespace Name For avalue which is either anamespace name
or absent to be valid with respect to a wildcard constraint (the value of a) 1. 2. 3. for formal details of
attribute wildcard validation.

determines the validation of children of element information items. Informally:

» A with the distinguished value empty validates elements with no character or element information item
children.

* A whichisa§ 2.2.1.2 — Simple Type Definition on page 6 validates elements with character-only
children.

* Aneement-only validates elements with children that conform to the supplied content model.
» A mixed validates elements whose element children (i.e. specifically ignoring other children such as
character information items) conform to the supplied content model.

determine whether an element declaration appearing in a content model is prevented from additionally
validating element items with an § 2.6.1 — xsi:type on page 12 attribute that identifies a complex type
definition derived by extension or restriction from this definition, or element itemsin a substitution group
whose type definition is similarly derived: If is empty, then al such substitutions are allowed, otherwise,
the derivation method(s) it names are disallowed.

See § 3.13 — Annotations on page 88 for information on the role of the property.

3.4.2. XML Representation of Complex Type Definitions
The XML representation for a complex type definition schema component is aelement information item.

The XML representation for complex type definitionswith asimpletype definition is significantly different
from that of those with other s, and this is reflected in the presentation below, which displays first the
elements involved in the first case, then those for the second. The property mapping is shown once for
each case.

Whichever alternative for the content of is chosen, the following property mappings apply:

Theactual value of thenane attributeif present, otherwise absent. The actual value of thet ar get Nanes-
pace attribute of the ancestor element information item if present, otherwise absent. The actual value of
theabst r act attribute, if present, otherwise false. A set corresponding to the actual value of the bl ock

XML Schema Part 1: Structures

Complex Type Definitions Page 41 of 124

attribute, if present, otherwise on the actual value of thebl ockDef aul t attribute of the ancestor element
information item, if present, otherwise on the empty string. Call thisthe EBV (for effective block value).
Then the value of this property is

1. theEBV isthe empty string
the empty set;

2. theEBVis#al |
{ extension, restriction} ;

3. aset with members drawn from the set above, each being present or absent depending on whether the
actual value (which isalist) contains an equivalently named item.

Although the bl ockDef aul t attribute of may include values other than restriction orextension, those
values are ignored in the determination of for complex type definitions (they are used el sewhere).

Asfor above, but usingthef i nal andf i nal Def aul t attributesin place of thebl ock and bl ockDe-

f aul t attributes. The annotations corresponding to the element information itemin the children, if present,
in the and children, if present, and in their and children, if present, otherwise absent.

When the alternative is chosen, the following elements are relevant, and the remaining property mappings
are as below. Note that either or must be chosen as the content of .

Thetype definition to by the actual value of thebase attribute If the alternative is chosen, then restriction,
otherwise (the alternative is chosen) extension. A union of sets of attribute uses as follows

1. The set of attribute uses corresponding to the children, if any.
2. The of the attribute groups to by the actual values of ther ef attribute of the children, if any.

3. if the type definition to by the actual value of the base attribute is a complex type definition, the of
that type definition, unlessthe dternative is chosen, in which case some members of that type definition's
may not be included, namely those whose 's and are the same as

A. theand of the of an attribute use in the set per or above;

B. what would have been the and of the of an attribute usein the set per above but for the actual value
of the use attribute of the relevant among the children of being prohibited.

1. Letthelocal wildcard be defined as
A. thereisan present

a wildcard based on the actual values of the namespace and pr ocessCont ent s attributes
and the children, exactly as for the wildcard corresponding to an element as set out in § 3.10.2 —
XML Representation of Wildcard Schema Components on page 75;

B. absent.

2. Let the complete wildcard be defined as
A. there are no children corresponding to attribute groups with non-absent s
the local wildcard.

B. there are one or more children corresponding to attribute groups with non-absent s

XML Schema Part 1: Structures

Page 42 of 124 Schema Component Details

i. thereisan present

awildcard whose and are those of thelocal wildcard, and whose istheintensional intersection
of the of the local wildcard and of the s of al the non-absent s of the attribute groups corre-
sponding to the children, as defined in Attribute Wildcard I ntersection For awildcard's value
to be the intensional intersection of two other such values (call them O1 and O2): 1. 2. 3. 4.
5. 6. Inthe case where there are more than two val ues, theintensiona intersection is determined
by identifying the intensional intersection of two of the values as above, then the intensional
intersection of that value with the third (providing the first intersection was expressible), and
S0 on asrequired. .

ii. thereisno present
awildcard whose properties are as follows:
The of thefirst non-absent of an attribute group among the attribute groups correspond-
ing to the children.

The intensional intersection of the s of al the non-absent s of the attribute groups
corresponding to the children, as defined in Attribute Wildcard Intersection For a
wildcard's value to be the intensional intersection of two other such values (call them
01 and 02): 1. 2. 3. 4. 5. 6. In the case where there are more than two values, the
intensional intersection is determined by identifying the intensional intersection of
two of the values as above, then the intensional intersection of that value with the
third (providing the first intersection was expressible), and so on as required. .

absent.

3. Thevaueisthen determined by
A. thedternativeis chosen
the complete wildcard;
B. thealternativeischosen
i. letthe basewildcard be defined as

a) thetypedefinitionto by the actual value of thebase attributeisacomplex type definition
with an

that .
b) absent.

ii. Thevalueisthen determined by
a) thebasewildcard is non-absent
1) thecomplete wildcard is absent
the base wildcard.

2) awildcard whose and are those of the complete wildcard, and whoseistheintensional
union of the of the complete wildcard and of the base wildcard, as defined in Attribute
Wildcard Union For awildcard's value to be the intensional union of two other such

XML Schema Part 1: Structures

Complex Type Definitions Page 43 of 124

1

values (call them O1 and O2): 1. 2. 3. 4. 5. 6. In the case where there are more than
two values, the intensional union is determined by identifying the intensional union
of two of the values as above, then the intensional union of that value with the third
(providing the first union was expressible), and so on as required. .

b) (the base wildcard is absent) the complete wildcard

the type definition to by the actual value of the base attribute isacomplex type definition whose own
isasimple type definition and the alternative is chosen

starting from either
A. the simple type definition corresponding to the among the children of if thereis one;

B. otherwise (hasnoamong its children), the simple type definition which isthe of the type definition
to by the actual value of the base attribute

a simple type definition which restricts the simple type definition identified in or with a set of facet
components corresponding to the appropriate element information items among the 's children (i.e.
those which specify facets, if any), as defined in Simple Type Restriction (Facets) For a simple type
definition (call it R) to restrict another simple type definition (call it B) with a set of facets (call this
S) 1. 2. 3. If above holds, the of R constitute arestriction of the of B with respectto S. ;

the type definition to by the actual value of the base attribute isacomplex type definition whose own
ismixed and aparticlewhichisemptiable, as defined in Particle Emptiable For aparticleto be emptiable
1. 2. and the aternative is chosen

starting from the simple type definition corresponding to the among the children of (which must be
present) a simple type definition which restricts that simple type definition with a set of facet compo-
nents corresponding to the appropriate element information items among the 's children (i.e. those
which specify facets, if any), asdefined in Simple Type Restriction (Facets) For asimpletype definition
(cdl it R) to restrict another simple type definition (cal it B) with a set of facets (call this S) 1. 2. 3.
If above holds, the of R constitute arestriction of the of B with respectto S. ;

the type definition to by the actual value of the base attribute is a complex type definition (whose
own must be a simple type definition, see below) and the alternative is chosen

the of that complex type definition;

(the type definition to by the actual value of the base attribute is a simple type definition and the
alternative is chosen), then that simple type definition.

When the aternative is chosen, the following elements are relevant (as are the and elements, not repeated

here), and the additional property mappings are as below. Note that either or must be chosen asthe content
of , but their content models are different in this case from the case above when they occur as children of

The property mappings below are also used in the case where the third aternative (neither nor) is chosen.
This case is understood as shorthand for complex content restricting the ur-type definition, and the details
of the mappings should be modified as necessary.

Thetype definition to by the actual value of thebase attribute If the alternative is chosen, then restriction,
otherwise (the alternative is chosen) extension. A union of sets of attribute uses as follows:

1

The set of attribute uses corresponding to the children, if any.

XML Schema Part 1: Structures

Page 44 of 124 Schema Component Details

2. The of the attribute groups to by the actual values of ther ef attribute of the children, if any.

3. Theof thetype definition to by the actual value of the base attribute, unless the aternative is chosen,
in which case some members of that type definition's may not be included, namely those whose 's and
arethe same as

A. Theand of the of an attribute usein the set per or above;
B. what would have been the and of the of an attribute usein the set per above but for the actual value
of the use attribute of the relevant among the children of being prohibited.
As above for the alternative.
1. Let the effective mixed be
A. them xed attribute is present on
its actual value;
B. theni xed attribute is present on
its actual value;

C. fal se.

2. Let the effective content be
A. i. Thereisno,, or anong the children;

ii. Thereisan or among the children with no children of its own excluding ;

iii. There is a among the children with no children of its own excluding whose m nGCccur s
attribute has the actual value 0;

i. theeffectivemixedistrue
A particle whose properties are as follows:

1

1

A model group whose is sequence and whose is empty.

ii. empty
B. the particle corresponding to the, , or among the children.
3. Thenthevalue of the property is
A. thedternativeis chosen
i. theeffective content is empty
empty;

ii. apair consisting of

XML Schema Part 1: Structures

Complex Type Definitions Page 45 of 124

a) mixed if the effective mixed ist r ue, otherwise elementOnly

b) The effective content.

B. thealternative is chosen
i. theeffective content is empty
the of the type definition to by the actual value of the base attribute
ii. thetype definition to by the actual value of the base attribute has a of empty
apair as per above;

iii. apair of mixed or elementOnly (determined as per above) and a particle whose properties are
asfollows:

1
1

A model group whoseis sequence and whose are the particle of the of the type defini-
tion to by the actual value of the base attribute followed by the effective content.

|:| Asidefrom the simple coherence requirements enforced above, constraining type definitionsidentified asrestrictions
to actually berestrictions, that is, to validate a subset of the itemswhich are validated by their base type definition,
isenforced in § 3.4.6 — Constraints on Complex Type Definition Schema Components on page 51.

|:| The only substantive function of the value prohibited for the us e attribute of anisin establishing the correspondence
between a complex type defined by restriction and its XML representation. It serves to prevent inheritance of an
identically named attribute use from the . Such an does not correspond to any component, and hence there is no
interaction with either explicit or inherited wildcards in the operation of § 3.4.4 — Complex Type Definition Vali-
dation Rules on page 48 or § 3.4.6 — Constraints on Complex Type Definition Schema Components on page 51.

Careful consideration of the above concrete syntax reveals that a type definition need consist of no more
than aname, i.e. that <conpl exType nane="anyThi ng"/ > isalowed.

I:I <xs: conpl exType name="|engt h1">
<xs: si npl eCont ent >
<xs: extensi on base="xs: nonNegati vel nt eger">
<xs:attribute name="unit" type="xs: NMTOKEN'/ >
</ xs: ext ensi on>
</ xs: si npl eCont ent >
</ xs: conpl exType>

<xs:el ement name="w dth" type="I|engthl"/>
<wi dth uni t="cnl' >25</w dt h>
<xs: conpl exType nane="| engt h2" >

<xs: conpl exCont ent >
<xs:restriction base="xs:anyType">

XML Schema Part 1: Structures

Page 46 of 124

<XS:sequence>

<xs: el ement name="size" type="xs:nonNegativelnteger"/>

<xs: el ement name="unit" type="xs: NMTOKEN'/ >
</ xs: sequence>
</xs:restriction>
</ xs: conmpl exCont ent >
</ xs: conpl exType>

<xs: el ement nane="depth" type="I| ength2"/>
<dept h>
<si ze>25</si ze><uni t >cnx/ uni t >

</ dept h>

<xs: conpl exType nanme="| engt h3" >
<Xs:sequence>

<xs:el ement nane="size" type="xs:nonNegativelnteger"/>

<xs: el ement name="unit" type="xs: NMTOKEN'/ >
</ xs: sequence>
</ xs: conpl exType>

Schema Component Details

Three approaches to defining atype for length: one with character data content constrained by reference to a built-
in datatype, and one attribute, the other two using two elements. | engt h3 isthe abbreviated dternativetol engt h2:

they correspond to identical type definition components.

[:] <xs: conpl exType name="per sonNange" >
<xs: sequence>
<xs:element nane="title" mnOccurs="0"/>

<xs: el ement nane="forenane" m nCccurs="0" maxCccur s="unbounded"/ >

<xs: el ement nane="surname"/>
</ xs: sequence>
</ xs: conpl exType>

<xs: conpl exType nanme="ext endedNane" >
<xs: conpl exCont ent >
<xs: ext ensi on base="personNane">
<Xs: sequence>
<xs:el ement nane="generation" m nCccurs="0"/>
</ xs: sequence>
</ xs: ext ensi on>
</ xs: conmpl exCont ent >
</ xs: conpl exType>

<xs: el ement nanme="addressee" type="extendedNane"/>

<addr essee>

<f or ename>Al bert </ f or ename>
<f or ename>Ar nol d</ f or enane>
<sur name>Cor e</ sur nane>
<gener ati on>Jr </ generati on>
</ addr essee>

XML Schema Part 1: Structures

Complex Type Definitions Page 47 of 124

A type definition for persona names, and adefinition derived by extension which adds a single element; an element
declaration referencing the derived definition, and a valid instance thereof.

[:] <xs: conpl exType nanme="si npl eNane" >
<xs: conpl exCont ent >
<xs:restriction base="personNane">
<XS: sequence>
<xs:el ement nane="forename" m nCccurs="1" nmaxQccurs="1"/>
<xs: el ement name="surnanme"/>
</ xs: sequence>
</xs:restriction>
</ xs: conpl exCont ent >
</ xs: conpl exType>

<xs: el ement nane="who" type="si npl eNane"/>

<who>

<f orename>Bi | | </ f or enanme>
<sur nanme>d i nt on</ sur nane>
</ who>

A simplified type definition derived from the base type from the previous example by restriction, eliminating one
optional daughter and fixing another to occur exactly once; an element declared by reference to it, and a valid
instance thereof.

[:] <xs:conpl exType nanme="paraType" m xed="true">
<xs: choi ce mi nCccurs="0" maxCccur s="unbounded" >
<xs: el ement ref="enmph"/>
<xs: el ement ref="strong"/>
</ xs: choi ce>
<xs:attribute name="version" type="xs:nunber"/>
</ xs: conpl exType>

A further illustration of the abbreviated form, with the m xed attribute appearing on conpl exType itself.

3.4.3. Constraintson XML Representations of Complex Type Definitions

src: Complex Type Definition Representation OK
In addition to the conditions imposed on element information items by the schema for schemas,

1. If thedternative is chosen, the type definition to by the actual value of the base attribute must be a
complex type definition;

2. If thedternativeischosen,
A. Thetype definition to by the actual value of the base attribute must be
i. acomplex type definition whose is a simple type definition;

ii. only if the alternative is also chosen, a complex type definition whose is mixed and a particle
which is emptiable, as defined in Particle Emptiable For a particle to be emptiable 1. 2. ;

iii. only if the alternative is also chosen, a simple type definition.

XML Schema Part 1: Structures

Page 48 of 124 Schema Component Details
B. If aboveissatisfied, then there must be a among the children of .

|:| Although not explicitly ruled out either here or in Appendix A — Schema for Schemas (normative) on
page 118, specifying <xs: conpl exType . . . m xed='true' whenthealternativeischosen has
no effect on the corresponding component, and should be avoided. This may be ruled out in a subsequent
version of this specification.

3. The corresponding complex type definition component must satisfy the conditions set out in § 3.4.6 —
Constraints on Complex Type Definition Schema Components on page 51,

4. If or in the correspondence specification above for is satisfied, the intensional intersection must be
expressible, as defined in Attribute Wildcard Intersection For awildcard's value to be the intensional
intersection of two other such values (call them O1 and O2): 1. 2. 3. 4. 5. 6. In the case where there
are more than two values, the intensional intersection is determined by identifying the intensional
intersection of two of the values as above, then the intensional intersection of that value with the third
(providing the first intersection was expressible), and so on as required. .

3.4.4. Complex Type Definition Validation Rules

cvc: Element Locally Valid (Complex Type)
For an element information item to be locally valid with respect to acomplex type definition
1. isfalse

2. If of Element Locally Valid (Element) For an element information item to belocally valid with respect
to an element declaration 1. 2. 3. 4. 5. 6. 7. did not apply, then

A. theisempty
the element information item has no character or e ement information item children.
B. theisasimpletype definition

the element information item has no element information item children, and the normalized value
of the element information item is valid with respect to that smple type definition as defined by
String Valid For a string to be locally valid with respect to a simple type definition 1. 2. A string
isadeclared entity nameif it isequal to the name of some unparsed entity information itemin the
value of the unparsedEntities property of the document information item at the root of the infoset
containing the element or attribute information item whose normalized value the string is. .

C. theiseement-only

the element information item has no character information item children other than those whose
character code is defined as awhite space in [XML 1.0 (Second Edition)].

D. theiseement-only or mixed

the sequence of the element information item's element information item children, if any, taken
in order, is valid with respect to the 's particle, as defined in Element Sequence Locally Valid
(Particle) For a sequence (possibly empty) of element information items to be locally valid with
respect to a particle 1. 2. 3. Clauses and do not interact: an element information item validatable

XML Schema Part 1: Structures

Complex Type Definitions Page 49 of 124

by a declaration with a substitution group head in a different namespace is not validatable by a
wildcard which accepts the head's namespace but not its own. .

3. For each attribute information item in the el ement information item's attributes excepting those whose
namespace nameisidentical toht t p: / / www. W3. or g/ 2001/ XM_Schena- i nst ance andwhose
local nameisoneof t ype, ni |l ,schemalLocat i on or noNanmespaceSchenalLocat i on,

A.

there is among the an attribute use with an whose matches the attribute information item's local
name and whoseisidentical to the attribute information item's namespace name (where an absent
istaken to beidentical to a namespace name with no value)

the attribute information must be valid with respect to that attribute use as per Attribute Locally
Valid (Use) For an attribute information item to bevalid with respect to an attribute use its normal -
ized value must match the canonical lexical representation of the attribute use'svaue, if it ispresent
and fixed. . In this case the of that attribute use is the context-determined declaration for the
attribute information item with respect to Schema-Validity Assessment (Attribute) The schema-
validity assessment of an attribute information item depends on its validation alone. During vali-
dation, associations between element and attribute information items among the children and
attributes on the one hand, and element and attribute declarations on the other, are established as
aside-effect. Such declarations are called the context-determined declarations. See (in) for attribute
declarations, (in) for element declarations. For an attribute information item's schema-validity to
have been assessed 1. 2. 3. For attributes, there is no difference between assessment and strict
assessment, so if the above holds, the attribute information item has been strictly assessed. and
Assessment Outcome (Attribute) If the schema-validity of an attribute information item has been
assessed as per , then in the post-schema-validation infoset it has properties asfollows: The nearest
ancestor element information item with a property. 1. 2. 1. 2. infoset. See for the other possible
value. .

i. Theremustbean.

ii. The attribute information item must be valid with respect to it as defined in Item Valid
(Wildcard) For an element or attribute information item to be locally valid with respect to a
wildcard constraint its namespace name must be valid with respect to the wildcard constraint,
as defined in . When this constraint applies 1. 2. 3. .

4, The of each attribute use in the whose is true matches one of the attribute information items in the
element information item's attributes as per above.

5. Let the wild IDs be the set of al attribute information item to which applied and whose validation
resulted in a context-determined declaration of mustFind or no context-determined declaration at al,
and whose local name and namespace name resolve (as defined by QName resolution (Instance) A
pair of alocal name and a namespace name (or absent) resolve to a schema component of a specified
kind in the context of validation by appeal to the appropriate property of the schema being used for
the assessment. Each such property indexes components by name. The property to use is determined
by the kind of component specified, that is, 1. 2. 3. 4. 5. 6. The component resolved to isthe entry in
the table whose name matches the local name of the pair and whose target namespace is identical to
the namespace name of the pair.) to an attribute declaration whose is or is derived from ID. Then

A.

There must be no more than oneiteminwild IDs.

XML Schema Part 1: Structures

Page 50 of 124 Schema Component Details

B. If wild IDsis non-empty, there must not be any attribute uses among the whose 'sis or is derived
from ID.

|:| This clause serves to ensure that even via attribute wildcards no element has more than one attribute of
type ID, and that even when an element legitimately lacks a declared attribute of type ID, a wildcard-
validated attribute must not supply it. That is, if an element has atype whose attribute declarationsinclude
one of type ID, it either has that attribute or no attribute of type ID.

|:| When anispresent, this does not introduce any ambiguity with respect to how attribute information itemsfor which
an attribute use is present amongst the whose name and target namespace match are assessed. In such cases the
attribute use always takes precedence, and the assessment of such items stands or falls entirely on the basis of the
attribute use and its . This follows from the details of .

3.4.5. Complex Type Definition Information Set Contributions

sic: Attribute Default Value

For each attribute use in the whose is false and whose is not absent but whose does not match one of the
attribute information items in the element information item's attributes as per of Element Locally Valid
(Complex Type) For an element information item to be locally valid with respect to a complex type defi-
nition 1. 2. 3. 4. 5. When an is present, this does not introduce any ambiguity with respect to how attribute
information items for which an attribute use is present amongst the whose hame and target namespace
match are assessed. In such cases the attribute use always takes precedence, and the assessment of such
items stands or fals entirely on the basis of the attribute use and its . This follows from the details of .
above, the post-schema-validation infoset has an attribute information item whose properties are as below
added to the attributes of the element information item.

local name
The's.

namespace hame
The's.

The canonical lexica representation of the effective value constraint value.
The canonical lexica representation of the effective value constraint value.
The nearest ancestor element information item with a property.

vaid.

full.

schema.

The added items should also either have (and if appropriate) properties, or their lighter-weight alternatives,
as specified in Attribute Validated by Type If of applies with respect to an attribute information item, in
the post-schema-validation infoset the attribute information item has a property: The normalized value of
theitem as validated. Furthermore, the item has one of the following aternative sets of properties: Either
An item isomorphic to the relevant attribute declaration's component. If and only if that type definition
has union, then an item isomorphic to that member of its which actually validated the attribute item's

XML Schema Part 1: Structures

Complex Type Definitions Page 51 of 124

normalized value. or simple. The of thetype definition. trueif the of the type definition isabsent, otherwise
false. The of the type definition, if it is not absent. If it is absent, schema processors may, but need not,
provide a vaue unique to the definition. If the type definition has union, then calling that member of the
which actually validated the attribute item's normalized val ue the actual member type definition, there are
three additional properties: The of the actual member type definition. true if the of the actual member type
definition is absent, otherwise false. The of the actual member type definition, if it is not absent. If it is
absent, schema processors may, but need not, provide a value unique to the definition. The first (item
isomorphic) aternative above is provided for applications such as query processors which need access to
the full range of details about an item's assessment, for exampl e the type hierarchy; the second, for lighter-
weight processors for whom representing the significant parts of the type hierarchy as information items
might be asignificant burden. Also, if the declaration hasa, the item has a property: The canonical lexical
representation of the declaration's value. If the attribute information item was not strictly assessed, then
instead of the values specified above, 1. 2. .

3.4.6. Constraints on Complex Type Definition Schema Components

All complex type definitions (see § 3.4 — Complex Type Definitions on page 38) must satisfy thefollowing
constraints.

cos: Complex Type Definition Properties Correct

1. Thevaluesof the properties of acomplex type definition must be as described in the property tableau
in § 3.4.1 — The Complex Type Definition Schema Component on page 39, modulo the impact of
§ 5.3 — Missing Sub-components on page 117.

If the is asimple type definition, the must be extension.

3. Circular definitions are disallowed, except for the. That is, it must be possibleto reach the by repeatedly
following the .

4. Two distinct attribute declarations in the must not have identical sand s.

Two distinct attribute declarations in the must not have s which are or are derived from ID.

cos: Derivation Valid (Extension)
If theis extension,

1. theisacomplex type definition
A. The of the must not contain extension.

B. Itsmust be a subset of the of the complex type definition itself, that is, for every attribute usein
the of the , there must be an attribute use in the of the complex type definition itself whose has
the same, and as its attribute declaration.

C. Ifithasan, the complex type definition must also have one, and the base type definition's 's must
be a subset of the complex type definition's ‘s, as defined by Wildcard Subset For a namespace
constraint (call it sub) to be an intensional subset of another namespace constraint (call it super)
1.2.3..

D. i. Theof theand the of the complex type definition itself must be the same simple type definition.
ii. The of both the and the complex type definition itself must be empty.

XML Schema Part 1: Structures

Page 52 of 124 Schema Component Details

iii. @ The of the complex type definition itself must specify aparticle.
b) 1) The of the must be empty.
2) 1) Both smust be mixed or both must be element-only.

2) The particle of the complex type definition must be a valid extension of the 's
particle, as defined in Particle Valid (Extension) For a particle (cal it E, for
extension) to be avalid extension of another particle (cal it B, for base) 1. 2. .

E. It must in principle be possible to derive the complex type definition in two steps, the first an
extension and the second a restriction (possibly vacuous), from that type definition among its
ancestors whose is the .

|:| This requirement ensures that nothing removed by arestriction is subsequently added back by
an extension. It is trivial to check if the extension in question is the only extension in its
derivation, or if there are no restrictions bar the first from the .

Constructing the intermediate type definition to check this constraint is straightforward: simply
re-order the derivation to put al the extension steps first, then collapse them into a single
extension. If the resulting definition can be the basisfor avalid restriction to the desired definition,
the constraint is satisfied.

2. theisasimpletype definition
A. The must be the same simple type definition.
B. The of the must not contain extension.
If this constraint Derivation Valid (Extension) If theisextension, 1. 2. If this constraint holds of acomplex

type definition, it isavalid extension of its. holds of a complex type definition, it is avalid extension of
its.

cos. Derivation Valid (Restriction, Complex)
If theisrestriction

1. Themust be acomplex type definition whose does not contain restriction.
2. For each attribute use (call thisR) in the
A. thereisan attribute use in the of the (cal this B) whose has the same and
i. a B'sisfase.
b) R'sistrue.
ii. R's'smust bevalidly derived from B's given the empty set as defined in Type Derivation OK
(Simple) For asimple type definition (call it D, for derived) to be validly derived from atype

definition (call this B, for base) given asubset of { extension, restriction, list, union} (of which
only restriction is actualy relevant) 1. 2. .

iii. Let the effective value constraint of an attribute use beits, if present, otherwiseits's. Then

a) B'seffective value constraint is absent or default.

XML Schema Part 1: Structures

Complex Type Definitions Page 53 of 124

B.

b) R'seffective value constraint isfixed with the same string as B's.

the must have an and the of the R's must be valid with respect to that wildcard, as defined in
Wildcard allows Namespace Name For a value which is either a namespace name or absent to be
valid with respect to awildcard constraint (thevalueof a) 1. 2. 3. .

3. For each attribute use in the of the whose is true, there must be an attribute use with an with the same
and asitsin the of the complex type definition itself whoseistrue.

4. |If thereisan,

A.
B.

The must also have one.

The complex type definition’'s's must be a subset of the's's, as defined by Wildcard Subset For
a namespace constraint (call it sub) to be an intensional subset of another namespace constraint
(call it super) 1. 2. 3..

Unless the is the , the complex type definition's 's must be identical to or stronger than the's's ,
where strict is stronger than lax is stronger than skip.

A. Themust bethe.

The of the complex type definition must be a simple type definition

a)

b)

The of the must be a simple type definition from which the is validly derived given the
empty set as defined in Type Derivation OK (Simple) For a simple type definition (call
it D, for derived) to be validly derived from atype definition (cal this B, for base) given
asubset of { extension, restriction, list, union} (of which only restrictionisactually relevant)
1.2.

The must be mixed and have a particle which isemptiable as defined in Particle Emptiable
For aparticle to be emptiable 1. 2. .

The of the complex type itself must be empty

a)
b)

a)
b)

The of the must also be empty.

The of the must be elementOnly or mixed and have aparticle which isemptiable as defined
in Particle Emptiable For a particle to be emptiable 1. 2. .

The of the complex type definition itself must be element-only
The of the complex type definition itself and of the must be mixed

The particle of the complex type definition itself must be avalid restriction of the particle of
the of the as defined in Particle Valid (Restriction) For a particle (call it R, for restriction) to
be avalid restriction of another particle (call it B, for base) 1. 2. .

Attempts to derive complex type definitions whose is element-only by restricting a whose is empty are
not ruled out by this clause. However if the complex type definition itself has a non-pointless particle it
will fail to satisfy Particle Valid (Restriction) For a particle (call it R, for restriction) to be a vaid
restriction of another particle (cal it B, for base) 1. 2. . On the other hand some type definitions with
pointless element-only content, for example an empty , will satisfy Particle Valid (Restriction) For a
particle (call it R, for restriction) to be avalid restriction of another particle (call it B, for base) 1. 2. with
respect to an empty , and so be valid restrictions.

XML Schema Part 1: Structures

Page 54 of 124 Schema Component Details

If this constraint Derivation Valid (Restriction, Complex) If theisrestriction 1. 2. 3. 4. 5. If this constraint
holds of a complex type definition, it isavalid restriction of its . holds of a complex type definition, it is
avalid restriction of its.

To restrict a complex type definition with a simple base type definition to empty, use a simple type definition with
afixed value of the empty string: this preserves the type information.

The following constraint defines a relation appeal ed to elsewhere in this specification.

cos: Type Derivation OK (Complex)

For a complex type definition (cal it D, for derived) to be validly derived from atype definition (call this
B, for base) given a subset of { extension, restriction}

1. If B and D are not the same type definition, then the of D must not be in the subset.
2. A. B and D must be the same type definition.
B. BmustbeD's.
C. i. D'smust not bethe.
ii. a D'siscomplex
it must be vaidly derived from B given the subset as defined by this constraint.
b) D'sissimple

it must be validly derived from B given the subset as defined in Type Derivation OK
(Simple) For asimple type definition (call it D, for derived) to be validly derived from a
type definition (call this B, for base) given a subset of { extension, restriction, list, union}
(of which only restriction is actually relevant) 1. 2. .

|:| Thisconstraint isused to check that when someone uses atypein a context where another type was expected (either
viaxsi : t ype or substitution groups), that the type used is actually derived from the expected type, and that that
derivation does not involve aform of derivation which was ruled out by the expected type.

|:| Thewording of above appealsto anotion of component identity which isonly incompletely defined by thisversion
of this specification. In some cases, the wording of this specification does make clear the rules for component
identity. These cases include:

* When they are both top-level components with the same component type, namespace name, and local name;

* When they are necessarily the same type definition (for example, when the two types definitions in question
are the type definitions associated with two attribute or element declarations, which are discovered to be the
same declaration);

» When they are the same by construction (for example, when an element's type definition defaults to being the
same type definition asthat of its substitution-group head or when acomplex type definition inherits an attribute
declaration from its base type definition).

In other cases two conforming implementations may disagree as to whether components are identical.

XML Schema Part 1: Structures

AttributeUses Page 55 of 124

3.4.7. Built-in Complex Type Definition

There is a complex type definition nearly equivalent to the ur-type definition present in every schema by
definition. It has the following properties:

Complex Type Definition of the Ur-Type anyType http://www.w3.0rg/2001/X M L Schema Itself restriction
A pair consisting of mixed and aparticlewith thefollowing properties: 1 1 amodel group with thefollowing
properties: sequence alist containing one particle with the following properties: 0 unbounded a wildcard
with the following properties: any lax The empty set a wildcard with the following properties:: any lax
The empty set The empty set false

The m xed content specification together with the lax wildcard and attribute specification produce the
defining property for the ur-type definition, namely that every type definition is (eventually) arestriction
of the ur-type definition: its permissions and requirements are (nearly) the least restrictive possible.

|:| This specification does not provide an inventory of built-in complex type definitions for use in user schemas. A
preliminary library of complex type definitions is available which includes both mathematical (e.g. r at i onal)
and utility (e.g. ar r ay) type definitions. In particular, thereisat ext type definition which is recommended for
use as the type definition in element declarations intended for general text content, as it makes sensible provision
for various aspects of internationalization. For more details, see the schema document for the type library at its
namespace name: http://www.w3.0rg/2001/03/X ML Schema/TypeL ibrary.xsd.

3.5. AttributeUses

An attribute use is a utility component which controls the occurrence and defaulting behavior of attribute
declarations. It playsthe samerolefor attribute declarationsin complex typesthat particles play for element
declarations.

[:] <xs: conpl exType>

<xs:attribute ref="xm:lang" use="required"/>

<xs:attribute ref="xnl:space" defaul t="preserve"/>
<xs:attribute name="version" type="xs:nunber" fixed="1.0"/>
</ xs: conpl exType>

XML representationswhich all involve attribute uses, illustrating some of the possibilitiesfor controlling occurrence.

3.5.1. TheAttribute Use Schema Component
The attribute use schema component has the following properties:

A boolean. An attribute declaration. Optional. A pair consisting of a value and one of default, fixed.
determines whether this use of an attribute declaration requires an appropriate attribute information item
to be present, or merely allowsit.

provides the attribute declaration itself, which will in turn determine the ssimple type definition used.

allows for local specification of a default or fixed value. This must be consistent with that of the , in that
if the specifies afixed value, the only allowed is the same fixed value.

XML Schema Part 1: Structures

http://www.w3.org/2001/03/XMLSchema/TypeLibrary.xsd

Page 56 of 124 Schema Component Details

3.5.2. XML Representation of Attribute Use Components

Attribute uses correspond to al uses of which allow a use attribute. These in turn correspond to two
components in each case, an attribute use and its (although note the latter is not new when the attribute
use is areference to a top-level attribute declaration). The appropriate mapping is described in § 3.2.2 —
XML Representation of Attribute Declaration Schema Components on page 17.

3.5.3. Constraintson XML Representations of Attribute Uses

None as such.

3.5.4. Attribute Use Validation Rules

cvc: Attribute L ocally Valid (Use)

For an attribute information item to bevalid with respect to an attribute use its normalized value must
match the canonical lexical representation of the attribute use's value, if it is present and fixed.

3.5.5. Attribute Use I nformation Set Contributions

None as such.

3.5.6. Constraints on Attribute Use Schema Components

All attribute uses (see § 3.5 — AttributeUses on page 55) must satisfy the following constraints.

cos. Attribute Use Correct

1. Thevauesof the propertiesof an attribute use must be as described in the property tableauin § 3.5.1 —
The Attribute Use Schema Component on page 55, modulo the impact of § 5.3 — Missing Sub-com-
ponents on page 117.

2. If thehasafixed, then if the attribute use itsalf has a, it must also be fixed and its value must match
that of the's.

3.6. Attribute Group Definitions

A schema can name a group of attribute declarations so that they may be incorporated as a group into
complex type definitions.

Attribute group definitions do not participate in validation as such, but the and of one or more complex
type definitions may be constructed in whole or part by reference to an attribute group. Thus, attribute
group definitions provide areplacement for some uses of XML's parameter entity facility. Attribute group
definitions are provided primarily for reference from the XML representation of schema components (see
and).

|:| <xs:attributeG oup name="nyAttr G oup">
<xs:attribute . . ./>

</ xs:attributeG oup>

XML Schema Part 1: Structures

http://www.w3.org/TR/REC-xml#dt-PE

Attribute Group Definitions Page 57 of 124

<xs: conpl exType nane="nyel emrent ">

<xs:attributeGoup ref="nyAttrG oup"/>
</ xs: conpl exType>

XML representations for attribute group definitions. The effect is asif the attribute declarations in the group were
present in the type definition.

3.6.1. TheAttribute Group Definition Schema Component
The attribute group definition schema component has the following properties:

An NCName as defined by [XM L-Namespaces)]. Either absent or anamespace name, asdefined in [XML-
Namespaces]. A set of attribute uses. Optional. A wildcard. Optional. An annotation.

Attribute groups are identified by their and ; attribute group identities must be unique within an XML
Schema. See § 4.2.3 — References to schema components across namespaces on page 110 for the use of
component identifiers when importing one schema into another.

isaset attribute uses, allowing for local specification of occurrence and default or fixed values.

provides for an attribute wildcard to be included in an attribute group. See above under § 3.4 — Complex
Type Definitions on page 38 for the interpretation of attribute wildcards during validation.

See § 3.13 — Annotations on page 88 for information on the role of the property.

3.6.2. XML Representation of Attribute Group Definition Schema Components

The XML representation for an attribute group definition schema component is an element information
item. It providesfor naming agroup of attribute declarations and an attribute wildcard for use by reference
in the XML representation of complex type definitions and other attribute group definitions. The corre-
spondences between the properties of the information item and properties of the component it corresponds
to are asfollows:

When an appears as a daughter of or , it corresponds to an attribute group definition as below. When it
appears as a daughter of or , it does not correspond to any component as such.

Theactual value of the nane attribute The actual value of thet ar get Nanmespace attribute of the parent
schenma element information item. The union of the set of attribute uses corresponding to the children,
if any, with the of the attribute groups to by the actual values of ther ef attribute of the children, if any.
Asfor the complete wildcard as described in § 3.4.2 — XML Representation of Complex Type Definitions
on page 40. The annotation corresponding to the element information item in the children, if present,
otherwise absent.

The example above illustrates a pattern which recurs in the XML representation of schemas: The same
element, in thiscase at t ri but eG oup, serves both to define and to incorporate by reference. In the
first case the nane attributeis required, in the second ther ef attribute isrequired, and the element must
be empty. These two are mutually exclusive, and also conditioned by context: the defining form, with a
name, must occur at the top level of aschema, whereasthe referring form, with ar ef , must occur within
a complex type definition or an attribute group definition.

3.6.3. Constraintson XML Representations of Attribute Group Definitions

src: Attribute Group Definition Representation OK
In addition to the conditions imposed on element information items by the schema for schemas,

XML Schema Part 1: Structures

Page 58 of 124 Schema Component Details

1. The corresponding attribute group definition, if any, must satisfy the conditions set out in § 3.6.6 —
Constraints on Attribute Group Definition Schema Components on page 58.

2. If orinthe correspondence specificationin 8 3.4.2 — XML Representation of Complex Type Definitions
on page 40 for , as referenced above, is satisfied, the intensional intersection must be expressible, as
defined in Attribute Wildcard Intersection For awildcard's value to be the intensional intersection of
two other such values (call them O1 and O2): 1. 2. 3. 4. 5. 6. In the case where there are more than
two values, theintensional intersection isdetermined by identifying theintensional intersection of two
of the values as above, then the intensional intersection of that value with the third (providing the first
intersection was expressible), and so on as required. .

3. Circular group reference is disallowed outside . That is, unless this element information item's parent
is, then among the children, if any, there must not be an with r ef attribute which resolves to the
component corresponding to this. Indirect circularity isalso ruled out. That is, when QName resolution
(Schema Document) For a QName to resolve to a schema component of aspecified kind 1. 2. 3. 4. is
applied to a QName arising from any swith ar ef attribute among the children, it must not be the
case that aQName is encountered at any depth which resolves to the component corresponding to this

3.6.4. Attribute Group Definition Validation Rules

None as such.

3.6.5. Attribute Group Definition I nformation Set Contributions

None as such.

3.6.6. Constraints on Attribute Group Definition Schema Components

All attribute group definitions (see § 3.6 — Attribute Group Definitions on page 56) must satisfy the fol-
lowing constraint.

cos: Attribute Group Definition Properties Correct

1. Thevaluesof the properties of an attribute group definition must be as described in the property tableau
in § 3.6.1 — The Attribute Group Definition Schema Component on page 57, modulo the impact of
§ 5.3 — Missing Sub-components on page 117;

2. Two distinct members of the must not have s both of whose s match and whose s are identical.

3. Two distinct members of the must not have s both of whose s are or are derived from ID.

3.7. Model Group Definitions

A model group definition associates a name and optional annotations with a8 2.2.3.1 — Model Group on
page 8. By reference to the name, the entire model group can be incorporated by referenceinto a.

Model group definitions are provided primarily for reference from the § 3.4.2 — XML Representation of
Complex Type Definitions on page 40 (see and). Thus, model group definitions provide a replacement
for some uses of XML's parameter entity facility.

XML Schema Part 1: Structures

http://www.w3.org/TR/REC-xml#dt-PE

Model Group Definitions Page 59 of 124

[:] <xs: group nane="nyMdel G oup" >
<xs: sequence>
<xs: el ement ref="sonmeThi ng"/>

</ xs: sequence>
</ xs: group>

<xs:conpl exType name="trivial">
<xs: group ref="nyMdel G oup"/>
<xs:attribute .../>

</ xs: conpl exType>

<xs: conpl exType nane="noreSo" >
<xs: choi ce>
<xs: el ement ref="anotherThing"/>
<xs: group ref="nyMdel G oup"/>
</ xs: choi ce>
<xs:attribute .../>
</ xs: conpl exType>

A minima model group is defined and used by reference, first as the whole content model, then as one alternative
inachoice.

3.7.1. The Model Group Definition Schema Component
The model group definition schema component has the following properties:

An NCName asdefined by [XML-Namespaces]. Either absent or anamespace name, asdefined in [XML-
Namespaces]. A model group. Optional. An annotation.

Model group definitionsareidentified by their and ; model group identities must be uniquewithinan XML
Schema. See § 4.2.3 — References to schema components across namespaces on page 110 for the use of
component identifiers when importing one schema into another.

Model group definitions per se do not participate in validation, but the of a particle may correspond in
whole or in part to amodel group from amodel group definition.

isthe § 2.2.3.1 —Model Group on page 8 for which the model group definition provides a name.
See § 3.13 — Annotations on page 88 for information on the role of the property.

3.7.2. XML Representation of Model Group Definition Schema Components

The XML representation for amodel group definition schema component is a element information item.
It provides for naming a model group for use by reference in the XML representation of complex type
definitions and model groups. The correspondences between the properties of the information item and
properties of the component it corresponds to are as follows:

If thereisanane attribute (in which case the item will have or as parent), then the item correspondsto a
model group definition component with properties as follows:

Theactual value of the nane attribute The actual value of thet ar get Nanmespace attribute of the parent
schenma element information item. A model group which is the of a particle corresponding to the , or
among the children (there must be one). The annotation corresponding to the element information itemin
the children, if present, otherwise absent.

XML Schema Part 1: Structures

Page 60 of 124 Schema Component Details

Otherwise, the item will have ar ef attribute, in which case it corresponds to a particle component with
properties as follows (unless mi nCccur s=maxQccur s=0, in which case the item corresponds to no
component at all):

The actual value of the m nGCccur s attribute, if present, otherwise 1. unbounded, if the maxCccur s
attribute equals unbounded, otherwise the actual value of the maxQccur s attribute, if present, otherwise
1. The of the model group definition to by the actual value of ther ef attribute

The name of this section is slightly misleading, in that the second, un-named, case above (with ar ef and
nonane) isnot really anamed model group at all, but areferenceto one. Also notethat in thefirst (hamed)
case above no referenceismadeto m nCccur s or maxCccur s: thisis because the schemafor schemas
does not allow them on the child of when it isnamed. Thisin turn is because the and of the particleswhich
refer to the definition are what count.

Given the constraints on its appearance in content models, an should only occur as the only item in the
children of anamed model group definition or acontent model: see 8§ 3.8.6 — Constraints on Model Group
Schema Components on page 63.

3.7.3. Constraintson XML Representations of Model Group Definitions

src: Model Group Definition Representation OK

In addition to the conditionsimposed on element information items by the schemafor schemas, the corre-
sponding model group definition, if any, must satisfy the conditions set out in § 3.8.6 — Constraints on
Model Group Schema Components on page 63.

3.7.4. Moddl Group Definition Validation Rules

None as such.

3.7.5. Model Group Definition Information Set Contributions

None as such.

3.7.6. Constraintson Model Group Definition Schema Components

All model group definitions (see 8 3.7 — Model Group Definitions on page 58) must satisfy the following
constraint.

cos: Model Group Definition Properties Correct

The values of the properties of amodel group definition must be as described in the property tableau in
§ 3.7.1 — The Maodel Group Definition Schema Component on page 59, modulo the impact of § 5.3 —
Missing Sub-components on page 117.

3.8. Model Groups

When the children of element information itemsare not constrained to be empty or by referencetoasimple
type definition (8 3.14 — Simple Type Definitions on page 89), the sequence of element information item
children content may be specified in more detail with a model group. Because the property of a particle
can beamodel group, and model groups contain particles, model groups can indirectly contain other model
groups; the grammar for content models is therefore recursive.

XML Schema Part 1: Structures

Mode Groups Page 61 of 124

[:] <xs:al |l >

<xs:element ref="cats"/>
<xs: el ement ref="dogs"/>
</xs:all>

<Xs: seguence>
<xs: choi ce>
<xs:element ref="left"/>
<xs:element ref="right"/>
</ xs: choi ce>
<xs: el ement ref="1andmark"/>
</ xs: sequence>

XML representations for the three kinds of model group, the third nested inside the second.

3.8.1. The Model Group Schema Component
The model group schema component has the following properties:

One of all, choice or sequence. A list of particles Optional. An annotation.
specifies a sequential (sequence), digunctive (choice) or conjunctive (all) interpretation of the . Thisin
turn determines whether the element information item children validated by the model group must:

* (sequence) correspond, in order, to the specified ;
» (choice) corresponded to exactly one of the specified ;

e (al) contain all and only exactly zero or one of each element specified in . The elements can occur in
any order. In this case, to reduce implementation complexity, isrestricted to contain local and top-level
element declarations only, with =0 or 1, =1.

When two or more particles contained directly or indirectly in the of amodel group haveidentically named
element declarations as their , the type definitions of those declarations must be the same. By 'indirectly’
is meant particles within the of a group which is itself the of a directly contained particle, and so on
recursively.

See § 3.13 — Annotations on page 88 for information on the role of the property.

3.8.2. XML Representation of Model Group Schema Components

The XML representation for a model group schema component is either an , a or a element information
item. The correspondences between the properties of those information items and properties of the compo-
nent they correspond to are as follows:

Each of the above items corresponds to a particle containing a model group, with properties as follows
(unlessm nQccur s=maxCccur s=0, in which case the item corresponds to no component at all):

The actual value of the m nGccur s attribute, if present, otherwise 1. unbounded, if the maxCccur s
attribute equals unbounded, otherwise the actual value of the maxQccur s attribute, if present, otherwise
1. A model group as given below: One of all, choice, sequence depending on the element information
item. A sequence of particles corresponding to al the, , , , or items among the children, in order. The
annotation corresponding to the element information item in the children, if present, otherwise absent.

XML Schema Part 1: Structures

Page 62 of 124 Schema Component Details

3.8.3. Constraintson XML Representations of Model Groups

src: Model Group Representation OK

In addition to the conditions imposed on , and element information items by the schema for schemas, the
corresponding particle and model group must satisfy the conditions set out in § 3.8.6 — Constraints on
Model Group Schema Components on page 63 and § 3.9.6 — Constraints on Particle Schema Components
on page 68.

3.8.4. Model Group Validation Rules

cvc: Element Sequence Valid

Define apartition of a sequence as a sequence of sub-sequences, some or all of which may be empty, such
that concatenating all the sub-sequences yields the original sequence.

For a sequence (possibly empty) of element information itemsto be locally valid with respect to a model
group

1. theisseguence

there must be a partition of the sequence into n sub-sequences where n isthe length of such that each
of the sub-sequences in order is valid with respect to the corresponding particle in the as defined in
Element Sequence Locally Valid (Particle) For a sequence (possibly empty) of element information
items to be locally valid with respect to a particle 1. 2. 3. Clauses and do not interact: an element
information item validatable by a declaration with a substitution group head in a different namespace
is not validatable by a wildcard which accepts the head's namespace but not its own. .

2. theischoice

there must be a particle among the such that the sequenceis valid with respect to that particle as defined
in Element Sequence Locally Valid (Particle) For asequence (possibly empty) of el ement information
items to be locally valid with respect to a particle 1. 2. 3. Clauses and do not interact: an element
information item validatable by a declaration with a substitution group head in a different namespace
is not validatable by a wildcard which accepts the head's namespace but not its own. .

3. theisadl

there must be a partition of the sequenceinto n sub-sequences where n isthe length of such that there
is a one-to-one mapping between the sub-sequences and the where each sub-sequence is valid with
respect to the corresponding particle as defined in Element Sequence Locally Valid (Particle) For a
sequence (possibly empty) of element information items to be locally valid with respect to a particle
1. 2. 3. Clauses and do not interact: an element information item validatable by a declaration with a
substitution group head in a different namespace is not validatable by a wildcard which accepts the
head's namespace but not its own. .

Nothing in the above should be understood as ruling out groups whose is empty: athough no sequence
can be valid with respect to such a group whose is choice, the empty sequence is valid with respect to
empty groups whose is sequence or all.

|:| The above definition isimplicitly non-deterministic, and should not be taken as arecipé for implementations. Note
in particular that whenisall, particlesisrestricted to alist of local and top-level element declarations (see § 3.8.6 —
Constraints on Model Group Schema Components on page 63). A much simpler implementation is possible than

XML Schema Part 1: Structures

Mode Groups Page 63 of 124

would arise from aliteral interpretation of the definition above; informally, the content is valid when each declared
element occurs exactly once (or at most once, if is0), and each isvalid with respect to its corresponding declaration.
The elements can occur in arbitrary order.

3.8.5. Modd Group Information Set Contributions
None as such.

3.8.6. Constraints on Model Group Schema Components
All modd groups (see § 3.8 — Model Groups on page 60) must satisfy the following constraints.

cos: Model Group Correct

1. Thevaluesof the properties of amodel group must be as described in the property tableau in § 3.8.1 —
The Model Group Schema Component on page 61, modulo the impact of 8 5.3 — Missing Sub-com-
ponents on page 117.

2. Circular groups are disalowed. That is, within the of agroup there must not be at any depth a particle
whose isthe group itself.

cos: All Group Limited
When amodel group has all, then

1. It appears only asthe value of one or both of the following properties:
A. the property of amodel group definition.

B. the property of a particle with =1which is part of a pair which constitutes the of a complex type
definition.

2. Theof al the particlesin the of the group must be O or 1.

cos. Element Declar ations Consistent

If the contains, either directly, indirectly (that is, within the of a contained model group, recursively) or
implicitly two or more element declaration particleswith the sameand , then all their type definitions must
be the same top-level definition, that is,

1. all their smust have a non-absent .
2. dl their smust have the same.
3. dl their smust have the same.

A list of particles implicitly contains an element declaration if a member of the list contains that element
declaration in its substitution group.

cos: Unique Particle Attribution

A content model must be formed such that during validation of an element information item sequence, the
particle component contained directly, indirectly or implicitly therein with which to attempt to validate

XML Schema Part 1: Structures

Page 64 of 124 Schema Component Details

each item in the sequence in turn can be uniquely determined without examining the content or attributes
of that item, and without any information about the itemsin the remainder of the sequence.

|:| Thisconstraint reconstructsfor XML Schemathe equivalent constraints of [XML 1.0 (Second Edition)] and SGML.
Given the presence of element substitution groups and wildcards, the concise expression of this constraint isdifficullt,
see Appendix H —Analysis of the Unique Particle Attribution Constraint (non-normative) on page 121 for further
discussion.

Since this constraint is expressed at the component level, it applies to content models whose origins (e.g. viatype
derivation and references to named model groups) are no longer evident. So particles at different points in the
content model are always distinct from one another, even if they originated from the same named model group.

|:| Because |ocally-scoped element declarations may or may not have a, the scope of declarations is not relevant to
enforcing either of the two preceding constraints.

The following constraints define rel ations appeal ed to elsewhere in this specification.

cos: Effective Total Range (all and sequence)

The effective total range of a particle whose is agroup whoseis al or sequenceisapair of minimum and
maximum, as follows:

minimum
The product of the particle's and the sum of the of every wildcard or element declaration particle

in the group's and the minimum part of the effective total range of each of the group particlesin
the group's (or O if thereareno).

maximum

unbounded if the of any wildcard or element declaration particle in the group's or the maximum
part of the effective total range of any of the group particlesin the group'sis unbounded, or if any
of thoseisnon-zero and the of the particleitsalf isunbounded, otherwise the product of the particle's
and the sum of the of every wildcard or element declaration particlein the group's and the maximum
part of the effective total range of each of the group particlesin the group's (or O if there areno).

cos. Effective Total Range (choice)

Theeffectivetota range of aparticlewhoseisagroup whaoseischoiceisapair of minimum and maximum,
asfollows:

minimum
The product of the particle's and the minimum of the of every wildcard or element declaration

particle in the group's and the minimum part of the effective total range of each of the group par-
ticlesin the group's (or O if thereare no).

maximum

unbounded if the of any wildcard or element declaration particle in the group's or the maximum
part of the effective total range of any of the group particlesin the group'sis unbounded, or if any
of thoseisnon-zero and the of the particleitsalf isunbounded, otherwise the product of the particle's
and the maximum of the of every wildcard or element declaration particle in the group's and the
maximum part of the effective total range of each of the group particles in the group's (or O if
thereareno).

XML Schema Part 1: Structures

Particles Page 65 of 124

3.9. Particles
Asdescribedin § 3.8 —Model Groups on page 60, particles contribute to the definition of content models.

[:] <xs: el enent ref="egg" ninCccurs="12" maxCccurs="12"/>
<xs:group ref="onelette" m nCccurs="0"/>

<xs:any maxCccur s="unbounded"/ >
XML representations which all involve particles, illustrating some of the possibilities for controlling occurrence.

3.9.1. The Particle Schema Component
The particle schema component has the following properties:

A non-negative integer. Either a non-negative integer or unbounded. One of a model group, a wildcard,
or an element declaration.

In general, multiple element information item children, possibly with intervening character children if the
content typeis mixed, can be validated with respect to asingle particle. When the is an element declaration
or wildcard, determines the minimum number of such element children that can occur. The number of
such children must be greater than or equal to . If is 0, then occurrence of such children is optional.

Again, when the is an element declaration or wildcard, the number of such element children must be less
than or equal to any numeric specification of ; if isunbounded, then thereisno upper bound on the number
of such children.

When the is a model group, the permitted occurrence range is determined by a combination of and and
the occurrence ranges of the's .
3.9.2. XML Representation of Particle Components

Particles correspond to all three elements (not immediately within , not immediately within and) which
allowm nQccur s and maxCccur s attributes. Thesein turn correspond to two componentsin each case,
a particle and its . The appropriate mapping is described in § 3.3.2 — XML Representation of Element
Declaration Schema Components on page 24, § 3.8.2 — XML Representation of Model Group Schema
Componentson page 61 and § 3.10.2 — XML Representation of Wildcard Schema Components on page 75
respectively.

3.9.3. Constraintson XML Representations of Particles

None as such.

3.9.4. Particle Validation Rules

cvc: Element Sequence L ocally Valid (Particle)
For asequence (possibly empty) of element information itemsto be locally valid with respect to aparticle

1. theisawildcard
A. Thelength of the sequence must be greater than or equal to the..

B. If isanumber, the length of the sequence must be less than or equal to the.

XML Schema Part 1: Structures

Page 66 of 124 Schema Component Details

C. Each element information item in the sequence must be valid with respect to the wildcard as
defined by Item Valid (Wildcard) For an element or attribute information item to be locally valid
with respect to awildcard constraint its namespace name must be valid with respect to the wildcard
constraint, as defined in . When this constraint applies 1. 2. 3. .

2. theisan element declaration

A. Thelength of the sequence must be greater than or equal to the.

B. If isanumber, the length of the sequence must be less than or equal to the.

C. For each element information item in the sequence

Theelement declarationislocal (i.e. itsmust not be global), itsisfalse, the element information
item's namespace name is identical to the element declaration's (where an absent is taken to
be identical to a namespace name with no value) and the element information item's local
name matches the element declaration's .

In this case the element declaration is the context-determined declaration for the element
information item with respect to Schema-Validity Assessment (Element) The schema-validity
assessment of an element information item depends on its validation and the assessment of
its element information item children and associated attribute information items, if any. So
for an element information item's schema-validity to be assessed 1. 2. If either case of above
holds, the element information item has been strictly assessed. If the item cannot be strictly
assessed, because neither nor above are satisfied, an element information item's schema
validity may be laxly assessed if its context-determined declaration is not skip by validating
with respect to the ur-type definition as per . In general if above holds does not, and vice versa.
When an xsi:type attribute is involved, however, takes precedence, as is made clear in . and
Assessment Outcome (Element) If the schema-validity of an element information item has
been assessed as per , then in the post-schema-validation infoset it has properties as follows:
The nearest ancestor element information item with a property (or this element item itself if
it has such aproperty). 1. 2. 1. 2. 3..

The element declaration istop-leve (i.e. itsisglobal), isfase, the element information item's
namespace name is identical to the element declaration’'s (where an absent is taken to be
identical to a namespace name with no value) and the element information item's local name
matches the element declaration's .

In this case the element declaration is the context-determined declaration for the element
information item with respect to Schema-Validity Assessment (Element) The schema-validity
assessment of an element information item depends on its validation and the assessment of
its element information item children and associated attribute information items, if any. So
for an element information item's schema-validity to be assessed 1. 2. If either case of above
holds, the element information item has been strictly assessed. If the item cannot be strictly
assessed, because neither nor above are satisfied, an element information item's schema
validity may be laxly assessed if its context-determined declaration is not skip by validating
with respect to the ur-type definition as per . In general if above holds does not, and vice versa.
When an xsi:type attribute is involved, however, takes precedence, as is made clear in . and
Assessment Outcome (Element) If the schema-validity of an element information item has
been assessed as per , then in the post-schema-validation infoset it has properties as follows:
The nearest ancestor element information item with a property (or this element item itself if
it has such aproperty). 1. 2. 1. 2. 3..

XML Schema Part 1: Structures

Particles

Page 67 of 124

. The element declaration is top-level (i.e. itsis global), its does not contain substitution, the

local and namespace name of the element information item resolve to an el ement declaration,
as defined in QName resolution (Instance) A pair of alocal name and a namespace name (or
absent) resolve to a schema component of a specified kind in the context of validation by
appeal to the appropriate property of the schema being used for the assessment. Each such
property indexes components by name. The property to use is determined by the kind of
component specified, that is, 1. 2. 3. 4. 5. 6. The component resolved to is the entry in the
table whose name matches the local name of the pair and whose target namespace is identical
to the namespace name of the pair. -- call this declaration the substituting declaration and the
substituting declaration together with the particle's element declaration'sisvalidly substitutable
for the particle's element declaration as defined in Substitution Group OK (Transitive) For an
element declaration (call it D) to be validly substitutable for another element declaration (call
it C) subject to a blocking constraint (a subset of {substitution, extension, restriction}, the
valueofa) 1. 2..

In this case the substituting declaration is the context-determined declaration for the element
information item with respect to Schema-Validity Assessment (Element) The schema-validity
assessment of an element information item depends on its validation and the assessment of
its element information item children and associated attribute information items, if any. So
for an element information item's schema-validity to be assessed 1. 2. If either case of above
holds, the element information item has been strictly assessed. If the item cannot be strictly
assessed, because neither nor above are satisfied, an element information item's schema
validity may be laxly assessed if its context-determined declaration is not skip by validating
with respect to the ur-type definition as per . In general if above holds does not, and vice versa.
When an xsi:type attribute is involved, however, takes precedence, as is made clear in . and
Assessment Outcome (Element) If the schema-validity of an element information item has
been assessed as per , then in the post-schema-validation infoset it has properties as follows:
The nearest ancestor element information item with a property (or this element item itself if
it has such aproperty). 1. 2. 1. 2. 3..

3. theisamodd group

A. Thereisapartition of the sequence into n sub-sequences such that n is greater than or equal to .

B. If isanumber, n must be less than or equal to .

C. Each sub-sequencein the partition is valid with respect to that model group as defined in Element
Sequence Valid Define a partition of a sequence as a sequence of sub-sequences, some or all of
which may be empty, such that concatenating al the sub-sequences yields the original sequence.
For a sequence (possibly empty) of element information itemsto be locally valid with respect to
amodel group 1. 2. 3. Nothing in the above should be understood as ruling out groups whose is
empty: athough no sequence can be valid with respect to such agroup whose is choice, the empty
sequence is valid with respect to empty groups whose is sequence or all. .

Clauses and do not interact: an element information item validatable by a declaration with a substitution group
head in adifferent namespace is not validatable by awildcard which accepts the head's namespace but not its own.

XML Schema Part 1: Structures

Page 68 of 124 Schema Component Details

3.9.5. Particle I nformation Set Contributions

None as such.

3.9.6. Constraints on Particle Schema Components

All particles (see 8§ 3.9 — Particles on page 65) must satisfy the following constraints.

cos. Particle Correct

1. Thevalues of the properties of a particle must be as described in the property tableauin § 3.9.1—The
Particle Schema Component on page 65, modulo the impact of § 5.3 — Missing Sub-components on
page 117.

2. If isnot unbounded, that is, it has a numeric value, then
A. must not be greater than .
B. must be greater than or equal to 1.

The following constraints define rel ations appeal ed to el sewhere in this specification.

cos. Particle Valid (Extension)
For aparticle (call it E, for extension) to be avalid extension of another particle (call it B, for base)

1. They arethe same particle.

2. E's==1 anditsisasequencegroupwhose' first member isaparticle all of whose properties, recursively,
areidentical to those of B, with the exception of annotation properties.

The approach to defining a type by restricting another type definition set out here is designed to ensure
that types defined in this way are guaranteed to be a subset of the type they restrict. Thisis accomplished
by requiring a clear mapping between the components of the base type definition and the restricting type
definition. Permissible mappings are set out below viaa set of recursive definitions, bottoming out in the
obvious cases, e.g. where an (restricted) element declaration corresponds to another (base) element decla-
ration with the same name and type but the same or wider range of occurrence.

|:| The structural correspondence approach to guaranteeing the subset relation set out here is necessarily verbose, but
hasthe advantage of being checkablein astraightforward way. The working group solicits feedback on how difficult
thisisin practice, and on whether other approaches are found to be viable.

cos. ParticleValid (Restriction)
For aparticle (call it R, for restriction) to be avalid restriction of another particle (call it B, for base)

1. They arethe same particle.
2. depending on the kind of particle, per the table below, with the qualifications that

A. Any top-level element declaration particle (in R or B) which is the of one or more other el ement
declarations and whose substitution group contains at least one element declaration other than
itself istreated asif it were achoice group whose and are those of the particle, and whose consists
of one particle with and of 1 for each of the declarationsin its substitution group.

XML Schema Part 1: Structures

Particles Page 69 of 124

B. Any pointless occurrences of , or are ignored, where pointlessness is understood as follows:
i. isempty.
ii. @ The particle within which this appears has and of 1.
b) 1) The'shasonly one member.

2) The particle within which this appearsisitself among the of a.

i. isempty.

ii. hasonly one member.

i. isempty and the particle within which this appears has of 0.
ii. @ The particle within which this appears has and of 1.
b) 1) The'shasonly one member.

2) The particle within which this appearsisitself among the of a.

NameAnd- TypeOK NSCompat Recurse- AslfGroup Recurse- AslfGroup RecurseAs- IfGroup
N SSubset Forbidden Forbidden Forbidden Forbidden NSRecurse- CheckCardinality Recurse Forbidden
Forbidden Forbidden NSRecurse- CheckCardinality RecurseLax Forbidden Forbidden Forbidden
NSRecurse- CheckCardinality Recurse- Unordered MapAndSum Recurse Forbidden

cos. Occurrence Range OK
For a particle's occurrence range to be avalid restriction of another's occurrence range

1. Itsisgreater than or equal to the other's.
2. A. Theother'sisunbounded.

B. Both are numbers, and the particle'sislessthan or equal to the other's.

cos: Particle Restriction OK (Elt:Elt -- NameAndTypeOK)
For an element declaration particle to be avalid restriction of another element declaration particle

1. Thedeclarations s and s are the same.

2. R'soccurrence range is a valid restriction of B's occurrence range as defined by Occurrence Range
OK For a particle's occurrence range to be avalid restriction of another's occurrencerange 1. 2. .

3. A. Both B'sdeclaration'sand R's declaration's are global.
B. i. Either B'sistrueor R'sisfalse.

ii. either B's declaration's is absent, or is not fixed, or R's declaration's is fixed with the same
value.

iii. R'sdeclaration'sisasubset of B'sdeclaration's, if any.

iv. R'sdeclaration'sisasuperset of B's declaration's.

XML Schema Part 1: Structures

Page 70 of 124 Schema Component Details

v. R'sisvalidly derived given {extension, list, union} from B's as defined by Type Derivation
OK (Complex) For acomplex type definition (call it D, for derived) to be validly derived from
atype definition (call this B, for base) given a subset of {extension, restriction} 1. 2. or Type
Derivation OK (Simple) For a simple type definition (call it D, for derived) to be validly
derived from atype definition (call this B, for base) given a subset of { extension, restriction,
list, union} (of which only restriction is actually relevant) 1. 2. , as appropriate.

The above constraint on meansthat in deriving atype by restriction, any contained type definitions must themselves
be explicitly derived by restriction from the corresponding type definitions in the base definition, or be one of the
member types of a corresponding union..

cos: Particle Derivation OK (Elt:Any -- NSCompat)
For an element declaration particle to be avalid restriction of awildcard particle
1. The element declaration's is valid with respect to the wildcard's as defined by Wildcard alows

Namespace Name For avalue which is either a namespace hame or absent to be valid with respect to
awildcard constraint (thevalueof a) 1. 2. 3..

2. R'soccurrence range is a valid restriction of B's occurrence range as defined by Occurrence Range
OK For a particle's occurrence range to be a valid restriction of another's occurrencerange 1. 2. .

cos: Particle Derivation OK (Elt: All/Choice/Sequence -- Recur seAsl fGroup)

For an element declaration particle to be avalid restriction of a group particle (al, choice or sequence) a
group particle of the variety corresponding to B's, with and of 1 and with consisting of a single particle
the same asthe element declaration must be avalid restriction of the group as defined by Particle Derivation
OK (All:All,Sequence: Sequence -- Recurse) For an all or sequence group particleto be avalid restriction
of another group particle with the same 1. 2. Although the validation semantics of an al group does not
depend on the order of its particles, derived all groups are required to match the order of their basein order
to smplify checking that the derivation is OK. A complete functional mapping is order-preserving if each
particler in the domain R maps to a particle b in the range B which follows (not necessarily immediately)
the particle in the range B mapped to by the predecessor of r, if any, where predecessor and follows are
defined with respect to the order of the lists which constitute R and B. , Particle Derivation OK
(Choice:Choice-- Recursel.ax) For achoice group particleto be avalid restriction of another choice group
particle 1. 2. Although the validation semantics of a choice group does not depend on the order of its par-
ticles, derived choice groups are required to match the order of their base in order to simplify checking
that the derivation is OK. or Particle Derivation OK (All:All,Sequence: Sequence -- Recurse) For an all or
seguence group particleto be avalid restriction of another group particle with the same 1. 2. Although the
validation semantics of an al group does not depend on the order of its particles, derived al groups are
reguired to match the order of their basein order to simplify checking that the derivationis OK. A complete
functional mapping is order-preserving if each particler in the domain R mapsto a particle b in the range
B which follows (not necessarily immediately) the particle in the range B mapped to by the predecessor
of r, if any, where predecessor and follows are defined with respect to the order of the listswhich constitute
R and B. , depending on whether the group is all, choice or sequence.

XML Schema Part 1: Structures

Particles Page 71 of 124

cos: Particle Derivation OK (Any:Any -- NSSubset)
For awildcard particle to be avalid restriction of another wildcard particle
1. R'soccurrence range must be a valid restriction of B's occurrence range as defined by Occurrence

Range OK For a particle's occurrence range to be a valid restriction of another's occurrence range 1.
2..

2. R'smust be an intensional subset of B's as defined by Wildcard Subset For a namespace constraint
(call it sub) to be an intensional subset of another namespace constraint (call it super) 1. 2. 3. .

3. Unless B is the content model wildcard of the, R's must be identical to or stronger than B's , where
strict is stronger than lax is stronger than skip.

|:| The exception to the third clause above for derivations from the is necessary as its wildcards have a of lax, so
without this exception, no use of wildcards with of skip would be possible.

cos: Particle Derivation OK (All/Choice/Sequence: Any -- NSRecur seCheck Car dinality)
For agroup particle to be avalid restriction of awildcard particle

1. Every member of the of the group is a valid restriction of the wildcard as defined by Particle Valid
(Restriction) For aparticle (cal it R, for restriction) to be a valid restriction of another particle (call
it B, for base) 1. 2. .

2. The effective total range of the group, as defined by Effective Total Range (all and sequence) The
effective total range of a particle whose is agroup whoseisall or sequenceisapair of minimum and
maximum, as follows: minimum The product of the particle's and the sum of the of every wildcard or
element declaration particle in the group's and the minimum part of the effective total range of each
of the group particlesin the group's (or O if there are no). maximum unbounded if the of any wildcard
or element declaration particle in the group's or the maximum part of the effective total range of any
of the group particlesin the group'sis unbounded, or if any of those is non-zero and the of the particle
itself is unbounded, otherwise the product of the particle's and the sum of the of every wildcard or
element declaration particle in the group's and the maximum part of the effective total range of each
of the group particlesin the group's (or O if thereareno). (if the group isall or sequence) or Effective
Total Range (choice) The effective total range of a particle whoseis agroup whose is choiceisapair
of minimum and maximum, as follows. minimum The product of the particle's and the minimum of
the of every wildcard or element declaration particle in the group's and the minimum part of the
effective total range of each of the group particles in the group's (or O if there are no). maximum
unbounded if the of any wildcard or element declaration particle in the group's or the maximum part
of the effective total range of any of the group particlesin the group'sis unbounded, or if any of those
is non-zero and the of the particle itself is unbounded, otherwise the product of the particle's and the
maximum of the of every wildcard or element declaration particle in the group's and the maximum
part of the effective total range of each of the group particlesin the group's (or O if there areno). (if
it is choice) isavalid restriction of B's occurrence range as defined by Occurrence Range OK For a
particle's occurrence range to be avalid restriction of another's occurrencerange 1. 2. .

cos: Particle Derivation OK (All:All,Sequence: Sequence -- Recur se)
For an all or sequence group particle to be avalid restriction of another group particle with the same

XML Schema Part 1: Structures

Page 72 of 124 Schema Component Details

1. R'soccurrence range is a valid restriction of B's occurrence range as defined by Occurrence Range
OK For a particle's occurrence range to be a valid restriction of another's occurrencerange 1. 2. .

2. Thereisacomplete order-preserving functional mapping from the particlesin the of R to the particles
in the of B such that

A. Each particlein the of R isavalid restriction of the particle in the of B it maps to as defined by
Particle Valid (Restriction) For a particle (call it R, for restriction) to be a valid restriction of
another particle (call it B, for base) 1. 2. .

B. All particlesin the of B which are not mapped to by any particle in the of R are emptiable as
defined by Particle Emptiable For a particle to be emptiable 1. 2. .

Although the validation semantics of an all group does not depend on the order of its particles, derived al groups
are required to match the order of their base in order to simplify checking that the derivation is OK.

A complete functional mapping is order-preserving if each particle r in the domain R maps to a particle
b in the range B which follows (not necessarily immediately) the particle in the range B mapped to by the
predecessor of r, if any, where “predecessor” and “follows’ are defined with respect to the order of the
lists which constitute R and B.

cos: Particle Derivation OK (Choice:Choice -- Recur selax)
For a choice group particle to be avalid restriction of another choice group particle

1. R'soccurrence range is a valid restriction of B's occurrence range as defined by Occurrence Range
OK For a particle's occurrence range to be avalid restriction of another's occurrencerange 1. 2. ;

2. Thereisacomplete order-preserving functional mapping from the particlesin the of R to the particles
in the of B such that each particlein the of Risavalid restriction of the particlein the of B it mapsto
asdefined by ParticleValid (Restriction) For aparticle (call it R, for restriction) to beavalid restriction
of another particle (call it B, for base) 1. 2. .

Although the validation semantics of a choice group does not depend on the order of its particles, derived choice
groups are required to match the order of their base in order to simplify checking that the derivation is OK.

cos: Particle Derivation OK (Sequence:All -- Recur seUnor der ed)
For a sequence group particle to be avalid restriction of an all group particle

1. R'soccurrence range is a valid restriction of B's occurrence range as defined by Occurrence Range
OK For a particle's occurrence range to be avalid restriction of another's occurrencerange 1. 2. .

2. Thereisacomplete functional mapping from the particlesin the of R to the particlesin the of B such
that

A. No particlein the of B is mapped to by more than one of the particlesin the of R;

B. Each particlein the of R isavalid restriction of the particle in the of B it maps to as defined by
Particle Valid (Restriction) For a particle (call it R, for restriction) to be a valid restriction of
another particle (call it B, for base) 1. 2. ;

XML Schema Part 1: Structures

Particles Page 73 of 124

C. All particles in the of B which are not mapped to by any particle in the of R are emptiable as
defined by Particle Emptiable For a particle to be emptiable 1. 2. .

Although this clause allows reordering, because of the limits on the contents of all groups the checking process
can still be deterministic.

cos: Particle Derivation OK (Sequence:Choice -- MapAndSum)
For a sequence group particle to be avalid restriction of a choice group particle

1. Thereisacomplete functional mapping from the particlesin the of R to the particlesin the of B such
that each particle in the of R isavalid restriction of the particle in the of B it maps to as defined by
Particle Valid (Restriction) For a particle (call it R, for restriction) to be avalid restriction of another
particle (cal it B, for base) 1. 2. .

2. The pair consisting of the product of the of R and the length of its and unbounded if is unbounded
otherwise the product of the of R and the length of itsisavalid restriction of B's occurrence range as
defined by Occurrence Range OK For aparticle'soccurrencerangeto beavalid restriction of another's
occurrencerange 1. 2. .

|:| This clause is in principle more restrictive than absolutely necessary, but in practice will cover all the
likely cases, and is much easier to specify than the fully general version.

This case alows the “unfolding” of iterated digjunctions into sequences. It may be particularly useful when the
disjunction is an implicit one arising from the use of substitution groups.

cos: Particle Emptiable
For a particle to be emptiable

1. ItsisO.

2. ltsisagroup and the minimum part of the effective total range of that group, as defined by Effective
Total Range (all and sequence) The effective total range of a particle whose is a group whoseisall or
sequenceisapair of minimum and maximum, as follows: minimum The product of the particle'sand
the sum of the of every wildcard or element declaration particle in the group's and the minimum part
of the effective total range of each of the group particlesin the group's (or O if there are no). maximum
unbounded if the of any wildcard or element declaration particle in the group's or the maximum part
of the effective total range of any of the group particlesin the group'sis unbounded, or if any of those
is non-zero and the of the particle itself is unbounded, otherwise the product of the particle's and the
sum of the of every wildcard or element declaration particle in the group's and the maximum part of
the effective total range of each of the group particlesin the group's (or Oif thereareno). (if the group
isall or sequence) or Effective Total Range (choice) The effective total range of a particle whose is a
group whose is choice is a pair of minimum and maximum, as follows. minimum The product of the
particle's and the minimum of the of every wildcard or element declaration particle in the group's and
the minimum part of the effective total range of each of the group particlesin the group's (or O if there
are no). maximum unbounded if the of any wildcard or element declaration particlein the group's or
the maximum part of the effective total range of any of the group particlesin the group'sis unbounded,

XML Schema Part 1: Structures

Page 74 of 124 Schema Component Details

or if any of those is non-zero and the of the particle itself is unbounded, otherwise the product of the
particle's and the maximum of the of every wildcard or element declaration particlein the group's and
the maximum part of the effective total range of each of the group particlesin the group's (or O if there
areno). (if itischoice), is 0.

3.10. Wildcards

In order to exploit the full potential for extensibility offered by XML plus namespaces, more provision is
needed than DTDs allow for targeted flexibility in content models and attribute declarations. A wildcard
provides for validation of attribute and element information items dependent on their namespace name,
but independently of their local name.

|:| <xs:any processContents="skip"/>
<xs:any nanespace="##other" processContents="|ax"/>
<xs:any nanespace="http://ww. w3. or g/ 1999/ XSL/ Tr ansf or ni'/ >
<XS:any nanespace="##t ar get Nanmespace"/ >

<xs:anyAttribute namespace="http://ww. w3. org/ XM/ 1998/ nanespace"/ >

XML representations of the four basic types of wildcard, plus one attribute wildcard.

3.10.1. The Wildcard Schema Component
The wildcard schema component has the following properties:

One of any; apair of not and a namespace name or absent; or a set whose members are either namespace
names or absent. One of skip, lax or strict. Optional. An annotation.
provides for validation of attribute and element items that:

1. (any) have any namespace or are not namespace-qualified;

2. (not and a namespace name) are namespace-qualified with a namespace other than the specified
namespace name;

(not and absent) are namespace-qualified;

4, (aset whose members are either namespace names or absent) have any of the specified namespaces
and/or, if absent isincluded in the set, are unqualified.

controls the impact on assessment of the information items allowed by wildcards, as follows:

strict

There must be atop-level declaration for theitem available, or theitem must havean xsi : t ype,
and the item must be valid as appropriate.

skip
No constraints at all: the item must ssmply be well-formed XML.

XML Schema Part 1: Structures

Wildcards Page 75 of 124

lax

If the item has a uniquely determined declaration available, it must be valid with respect to that
definition, that is, validate if you can, don't worry if you can't.

See § 3.13 — Annotations on page 88 for information on the role of the property.

3.10.2. XML Representation of Wildcard Schema Components

The XML representation for awildcard schema component is an or element information item. The corre-
spondences between the properties of aninformation item and properties of the componentsit corresponds
to are as follows (see and for the correspondences for):

A particle containing a wildcard, with properties as follows (unless m nOccur s=maxQccur s=0, in
which case the item corresponds to no component at all):

The actual value of the m nCccur s attribute, if present, otherwise 1. unbounded, if the maxCccur s
attribute equal s unbounded, otherwise the actual value of the maxQccur s attribute, if present, otherwise
1. A wildcard as given below: Dependent on the actual value of the nanespace attribute: if absent, then
any, otherwise as follows:

#Hany
any
#other

a pair of not and the actual value of thet ar get Nanespace attribute of the ancestor element
information item if present, otherwise absent.

otherwise

a set whose members are namespace hames corresponding to the space-delimited substrings of
the string, except

1. if one such substring is ##t ar get Namespace, the corresponding member is the actual
valueof thet ar get Nanespace attribute of the ancestor element informationitem if present,
otherwise absent.

2. if one such substring is##| ocal , the corresponding member is absent.

The actual value of the pr ocessCont ent s attribute, if present, otherwise strict. The annotation corre-
sponding to the element information item in the children, if present, otherwise absent.

Wildcards are subject to the same ambiguity constraints (Unique Particle Attribution A content model
must be formed such that during validation of an element information item sequence, the particle component
contained directly, indirectly or implicitly therein with which to attempt to validate each item in the
seguence in turn can be uniquely determined without examining the content or attributes of that item, and
without any information about the itemsin the remainder of the sequence. This constraint reconstructs for
XML Schemathe equivalent constraints of and SGML. Given the presence of element substitution groups
and wildcards, the concise expression of this constraint is difficult, see for further discussion. Since this
constraint is expressed at the component level, it applies to content models whaose origins (e.g. viatype
derivation and references to named model groups) are no longer evident. So particles at different points
in the content model are always distinct from one another, even if they originated from the same named
model group.) as other content model particles: If an instance el ement could match either an explicit par-
ticle and awildcard, or one of two wildcards, within the content model of atype, that model isin error.

XML Schema Part 1: Structures

Page 76 of 124 Schema Component Details

3.10.3. Constraintson XML Representations of Wildcards

src: Wildcard Representation OK

In addition to the conditionsimposed on element information items by the schemafor schemas, the corre-
sponding particle and model group must satisfy the conditions set out in § 3.8.6 — Constraints on Model
Group Schema Components on page 63 and § 3.9.6 — Constraints on Particle Schema Components on
page 68.

3.10.4. Wildcard Validation Rules

cvc: Item Valid (Wildcard)

For an element or attribute information item to be locally valid with respect to a wildcard constraint its
namespace name must be valid with respect to the wildcard constraint, as defined in Wildcard allows
Namespace Name For a value which is either a namespace name or absent to be valid with respect to a
wildcard constraint (thevalue of a) 1. 2. 3..

When this constraint applies
1. islax

the item has no context-determined declaration with respect to Assessment Outcome (Element) If the
schema-validity of an element information item has been assessed as per , then in the post-schema-
validation infoset it has properties as follows. The nearest ancestor element information item with a
property (or thiselement itemitself if it hassuch aproperty). 1. 2. 1. 2. 3., Schema-Validity Assessment
(Element) The schema-validity assessment of an element information item depends on its validation
and the assessment of its element information item children and associated attributeinformation items,
if any. So for an element information item's schema-validity to be assessed 1. 2. If either case of above
holds, the element information item has been strictly assessed. If the item cannot be strictly assessed,
because neither nor above are satisfied, an element information item's schema validity may be laxly
assessed if its context-determined declaration is not skip by validating with respect to the ur-type
definition as per . In genera if above holds does not, and vice versa. When an xsi:type attribute is
involved, however, takes precedence, asis made clear in . and Schema-Validity Assessment (Attribute)
The schema-validity assessment of an attribute information item depends on its validation alone.
During validation, associations between element and attribute information items among the children
and attributes on the one hand, and element and attribute declarations on the other, are established as
a side-effect. Such declarations are called the context-determined declarations. See (in) for attribute
declarations, (in) for element declarations. For an attribute information item's schema-validity to have
been assessed 1. 2. 3. For attributes, there is no difference between assessment and strict assessment,
s0 if the above holds, the attribute information item has been strictly assessed. .

2. isdtrict
the item's context-determined declaration is mustFind.
3. isskip

the item's context-determined declaration is skip.

XML Schema Part 1: Structures

Wildcards Page 77 of 124

cvc: Wildcard allows Namespace Name

For avalue which is either a namespace name or absent to be valid with respect to a wildcard constraint
(the value of a)

1. Theconstraint must be any.

2. A. Theconstraint isapair of not and a namespace name or absent (call this the namespace test).
B. Thevaue must not be identical to the namespace test.
C. Thevalue must not be absent.

3. Theconstraint is aset, and the value isidentical to one of the members of the set.

3.10.5. Wildcard I nformation Set Contributions

None as such.

3.10.6. Constraints on Wildcard Schema Components
All wildcards (see § 3.10 — Wildcards on page 74) must satisfy the following constraint.

cos: Wildcard Properties Correct

The values of the properties of awildcard must be as described in the property tableau in § 3.10.1 — The
Wildcard Schema Component on page 74, modulo the impact of § 5.3 — Missing Sub-components on
page 117.

The following constraints define a rel ation appeal ed to elsewhere in this specification.

cos. Wildcard Subset

For a namespace constraint (call it sub) to be an intensional subset of another namespace constraint (call
it super)

1. super must be any.

2. A. submust beapair of not and a value (a namespace name or absent).
B. super must be a pair of not and the same value.

3. A. submust be a set whose members are either namespace names or absent.
B. i. super must be the same set or a superset thereof.

ii. super must be apair of not and a value (a namespace name or absent) and neither that value
nor absent must be in sub's set.

cos: AttributeWildcard Union
For awildcard's value to be the intensional union of two other such values (call them O1 and O2):

1. O1 and O2 are the same value
that value must be the value.

XML Schema Part 1: Structures

Page 78 of 124 Schema Component Details

2. either Ol or O2isany
any must be the value.

3. both O1 and O2 are sets of (hamespace hames or absent)
the union of those sets must be the value.

4. thetwo are negations of different values (namespace names or absent)
apair of not and absent must be the value.

5. either Ol or O2isapair of not and a namespace name and the other is a set of (namespace hames or
absent) (call thisset S)

A. the set Sincludes both the negated namespace name and absent
any must be the value.
B. the set Sincludes the negated namespace name but not absent
apair of not and absent must be the value.
C. theset Sincludes absent but not the negated namespace hame
the union is not expressible.
D. theset S does not include either the negated namespace name or absent
whichever of O1 or O2 isapair of not and a namespace name must be the value.
6. either Ol or O2isapair of not and absent and the other isaset of (namespace names or absent) (again,
call thisset S)
A. theset Sincludes absent
any must be the value.
B. theset S does not include absent
apair of not and absent must be the value.
In the case where there are more than two values, the intensional union is determined by identifying the

intensional union of two of the values as above, then the intensional union of that value with the third
(providing the first union was expressible), and so on as required.

cos: Attribute Wildcard Inter section
For awildcard's value to be the intensional intersection of two other such values (call them O1 and O2):

1. Oland O2 arethe same vaue
that value must be the value.
2. either Ol or O2isany
the other must be the value.

3. either Ol or O2 is a pair of not and a value (a namespace hame or absent) and the other is a set of
(namespace names or absent)

XML Schema Part 1: Structures

I dentity-constraint Definitions Page 79 of 124

that set, minusthe negated valueif it wasin the set, minus absent if it wasin the set, must be the value.
4. both Ol and O2 are sets of (namespace names or absent)

the intersection of those sets must be the value.
5. thetwo are negations of different namespace names

the intersection is not expressible.
6. theoneisanegation of a namespace name and the other is a negation of absent

the one which is the negation of a namespace name must be the value.

In the case where there are more than two values, the intensional intersection is determined by identifying
the intensional intersection of two of the values as above, then the intensional intersection of that value
with the third (providing the first intersection was expressible), and so on as required.

3.11. Identity-constraint Definitions

| dentity-constraint definition components provide for uniqueness and reference constraints with respect
to the contents of multiple elements and attributes.

|:| <xs: key nanme="ful | Nane" >
<xs: sel ector xpath=".//person"/>
<xs:field xpath="forenanme"/>
<xs:field xpat h="surname"/>
</ xs: key>

<xs: keyref name="personRef" refer="full Nane">
<xs:sel ector xpath=".//personPointer"/>
<xs:field xpath="@irst"/>
<xs:field xpath="@ast"/>

</ xs: keyr ef >

<xs:uni que nanme="nearlylD"'>
<xs:sel ector xpath=".//*"/>
<xs:field xpath="@d"/>

</ xs: uni que>

XML representations for the three kinds of identity-constraint definitions.

3.11.1. The Identity-constraint Definition Schema Component
The identity-constraint definition schema component has the following properties:

An NCName as defined by [XM L-Namespaces). Either absent or anamespace name, asdefined in [XML-
Namespaces]. One of key, keyref or unique. A restricted XPath ([XPath]) expression. A non-empty list of
restricted X Path ([XPath]) expressions. Required if is keyref, forbidden otherwise. An identity-constraint
definition with equal to key or unique. Optional. A set of annotations.

I dentity-constraint definitions are identified by their and ; Identity-constraint definition identities must be
unique within an XML Schema. See § 4.2.3 — References to schema components across namespaces on
page 110 for the use of component identifiers when importing one schemainto another.

XML Schema Part 1: Structures

Page 80 of 124 Schema Component Details

Informally, identifies the I dentity-constraint definition as playing one of three roles:

* (unigue) the Identity-constraint definition asserts unigqueness, with respect to the content identified by
, Of the tuples resulting from evaluation of the XPath expression(s).

* (key) the Identity-constraint definition asserts uniqueness as for unique. key further asserts that all
selected content actually has such tuples.

» (keyref) the I dentity-constraint definition asserts a correspondence, with respect to the content identified
by , of the tuples resulting from evaluation of the X Path expression(s), with those of the.

These congtraints are specified along side the specification of typesfor the attributes and el ementsinvolved,
i.e. something declared as of type integer may also serve as akey. Each constraint declaration has aname,
which existsin a single symbol space for constraints. The equality and inequality conditions appealed to
in checking these constraints apply to the value of thefields selected, so that for example 3. 0 and 3 would
be conflicting keys if they were both number, but non-conflicting if they were both strings, or one was a
string and one a number. Values of differing type can only be equal if one type is derived from the other,
and the value isin the value space of both.

Overall the augmentationsto XML's| Y | DREF mechanism are:
* Functioning as apart of an identity-constraint isin addition to, not instead of, having atype;

* Not just attribute values, but also element content and combinations of values and content can be
declared to be unique;

* ldentity-constraints are specified to hold within the scope of particular elements;

» (Combinations of) attribute values and/or element content can be declared to be keys, that is, not only
unique, but always present and non-nillable;

» The comparison between keyref and key or unique is by value equality, not by string equality.

specifies arestricted XPath ([X Path]) expression relative to instances of the element being declared. This
must identify a node set of subordinate elements (i.e. contained within the declared element) to which the
constraint applies.

specifies X Path expressionsrel ative to each element selected by a. Thismust identify asingle node (el ement
or attribute) whose content or value, which must be of asimpletype, isused inthe constraint. It is possible
to specify an ordered list of s, to cater to multi-field keys, keyrefs, and uniqueness constraints.

In order to reduce the burden on implementers, in particular implementers of streaming processors, only
restricted subsets of X Path expressions are allowed in and . The details are givenin 8 3.11.6 — Constraints
on ldentity-constraint Definition Schema Components on page 85.

|:| Provision for multi-field keys etc. goes beyond what is supported by xsl : key.

See § 3.13 — Annotations on page 88 for information on the role of the property.

3.11.2. XML Representation of Identity-constraint Definition Schema Components

The XML representation for an identity-constraint definition schemacomponent iseither a, aor aelement
information item. The correspondences between the properties of those information items and properties
of the component they correspond to are as follows:

XML Schema Part 1: Structures

I dentity-constraint Definitions Page 81 of 124

Theactual value of the nane attribute The actual value of thet ar get Namespace attribute of the parent
schema element information item. One of key, keyref or unique, depending on the item. A restricted
XPath expression corresponding to the actual value of the xpat h attribute of the element information
item among the children A sequence of X Path expressions, corresponding to the actual valuesof thexpat h
attributes of the element information item children, in order. If theitemisa, theidentity-constraint definition
to by the actual value of the r ef er attribute, otherwise absent. The annotations corresponding to the
element information item in the children, if present, and in the and children, if present, otherwise absent.

[:] <xs: el enent nane="vehicl e">
<xs: conpl exType>

<xs:attribute name="pl ateNunber" type="xs:integer"/>
<xs:attribute name="state" type="twoLetter Code"/>

</ xs: conpl exType>

</ xs: el ement >

<xs:el ement nane="state">
<xs: conpl exType>
<Xs: sequence>
<xs:el ement nane="code" type="twolLetter Code"/>
<xs: el ement ref="vehicle" maxCccurs="unbounded"/>
<xs: el ement ref="person" maxCccurs="unbounded"/>
</ xs: sequence>
</ xs: conpl exType>

<xs: key nane="reg"> <!-- vehicles are keyed by their plate within states -->
<xs:sel ector xpath=".//vehicle"/>
<xs:field xpat h="@l at eNunmber"/ >

</ xs: key>

</ xs: el ement >

<xs: el erent nanme="root">
<xs: conpl exType>
<Xs:sequence>

<xs:element ref="state" maxCccurs="unbounded"/>

</ xs: sequence>
</ xs: conpl exType>

<xs:key nane="state"> <!-- states are keyed by their code -->
<xs:sel ector xpath=".//state"/>

<xs:field xpath="code"/>

</ xs: key>

<xs: keyref name="vehicleState" refer="state">
<l-- every vehicle refers to its state -->
<xs:sel ector xpath=".//vehicle"/>

<xs:field xpath="&@tate"/>

</ xs: keyref>

XML Schema Part 1: Structures

Page 82 of 124 Schema Component Details

<xs: key name="regKey"> <!-- vehicles are keyed by a pair of state and plate -->
<xs:sel ector xpath=".//vehicle"/>

<xs:field xpath="&@tate"/>

<xs:field xpat h="@l at eNunber"/ >
</ xs: key>

<xs: keyref name="carRef" refer="regKey"> <!-- people's cars are a reference -->
<xs:sel ector xpath=".//car"/>

<xs:field xpath="@egState"/>

<xs:field xpath="@egPl ate"/>
</ xs: keyr ef >

</ xs: el enent >

<xs: el ement nanme="person">
<xs: conpl exType>
<XSs:sequence>

<xs:el erent nane="car">
<xs: conpl exType>
<xs:attribute name="regState" type="twolLetter Code"/>
<xs:attribute name="regPl ate" type="xs:integer"/>
</ xs: conpl exType>
</ xs: el ement >
</ xs: sequence>
</ xs: conpl exType>
</ xs: el ement >

A st at e element isdefined, which containsacode child and somevehi cl e andper son children.A vehi cl e
in turn has a pl at eNunber attribute, which is an integer, and a st at e attribute. State's codes are a key for
them within the document. Vehicle's pl at eNunber s are a key for them within states, and st ate and
pl at eNunber is asserted to be a key for vehi cl e within the document as a whole. Furthermore, a per son
element has an empty car child, withr egSt at e andr egPl at e attributes, which are then asserted together to
refer to vehi cl esviathe car Ref constraint. The requirement that avehi cl e's st at e match its containing
st at e'scode isnot expressed here.

3.11.3. Constraintson XML Representations of Identity-constraint Definitions

src: Identity-constraint Definition Representation OK

In addition to the conditions imposed on , and element information items by the schema for schemas, the
corresponding identity-constraint definition must satisfy the conditions set out in § 3.11.6 — Constraints
on Identity-constraint Definition Schema Components on page 85.

3.11.4. Identity-constraint Definition Validation Rules

cvc: ldentity-constraint Satisfied
For an element information item to be locally valid with respect to an identity-constraint

1. The, with the element information item as the context node, evaluates to a node-set (as defined in
[XPath]). Call thisthe target node set.

XML Schema Part 1: Structures

I dentity-constraint Definitions Page 83 of 124

Each node in the target node set is either the context node oran element hode among its descendants.

For each node in the target node set al of the , with that node as the context node, evaluate to either

an empty node-set or a node-set with exactly one member, which must have a simple type. Cal the
sequence of the type-determined values (as defined in [XML Schemas: Datatypes]) of the schema
normalized value of the element and/or attribute information itemsin those node-setsin order the key-
sequence of the node.

Cdll the subset of the target node set for which al the evaluate to a node-set with exactly one member

which is an element or attribute node with a simple type the qualified node set.

A.

theisunique

no two members of the qualified node set have key-sequences whose members are pairwise equal,
as defined by Equal in [XML Schemas: Datatypes].

. theiskey

i. Thetarget node set and the qualified node set are equal, that is, every member of the target
node set is also amember of the qualified node set and vice versa.

ii. No two members of the qualified node set have key-sequences whose members are pairwise
equal, as defined by Equal in [XML Schemas. Datatypes].

iii. Noelement member of the key-sequence of any member of the qualified node set was assessed
asvalid by reference to an element declaration whose istrue.

the is keyref

for each member of the qualified node set (call thisthe keyref member), there must beanodetable
associated with thein the of the element information item (see Identity-constraint Table An eligible
identity-constraint of an element information item is one such that or of is satisfied with respect
to that item and that constraint, or such that any of the element information item children of that
item have an property whose value has an entry for that constraint. A node table is a set of pairs
each consisting of a key-sequence and an element node. Whenever an element information item
has one or more €eligible identity-constraints, in the post-schema-validation infoset that element
information item has a property as follows: one Identity-constraint Binding information item for
each eligible identity-constraint, with properties as follows: The eligible identity-constraint. A
node table with one entry for every key-sequence (call it k) and node (call it n) such that 1. 2.
provided no two entries have the same key-sequence but distinct nodes. Potential conflicts are
resolved by not including any conflicting entries which would have owed their inclusion to above.
Notethat if al the conflicting entries arose under above, this means no entry at all will appear for
the offending key-sequence. The complexity of the above arises from the fact that keyref identity-
constraints may be defined on domains di stinct from the embedded domain of the identity-constraint
they reference, or the domains may be the same but self-embedding at some depth. In either case
the node table for the referenced identity-constraint needs to propagate upwards, with conflict
resolution. The Identity-constraint Binding information item, unlike others in this specification,
is essentially an internal bookkeeping mechanism. It is introduced to support the definition of
above. Accordingly, conformant processors may, but are not required to, expose them via properties
in the post-schema-validation infoset. In other words, the above constraints may be read as saying
validation of identity-constraints proceeds as if such infoset items existed. , which must be
understood as logically prior to this clause of this constraint, below) and there must be an entry

XML Schema Part 1: Structures

Page 84 of 124 Schema Component Details

in that table whose key-sequence is equal to the keyref member's key-sequence member for
member, as defined by Equal in [XML Schemas: Datatypes].

|:| The use of schema normalized value in the definition of key sequence above means that default or fixed value
constraints may play a part in key sequences.

|:| Because the validation of keyref (see) depends on finding appropriate entries in a element information item's node
table, and node tables are assembled strictly recursively from the node tables of descendants, only element infor-
mation items within the sub-tree rooted at the element information item being validated can be referenced success-
fully.

|:| Although this specification defines a post-schema-validation infoset contribution which would enable schema-
aware processors to implement above (Element Declaration If an element information item is valid with respect
to an element declaration as per then in the post-schema-validation infoset the element information item must, at
processor option, have either: an item isomorphic to the declaration component itself or trueiif of aboveis satisfied,
otherwisefalse), processorsare not required to provideit. This clause can beread asif in the absence of thisinfoset
contribution, the value of the relevant property must be available.

3.11.5. Identity-constraint Definition I nformation Set Contributions

sic: ldentity-constraint Table

An €ligible identity-constraint of an element information item is one such that or of Identity-constraint
Satisfied For an element information item to be locally valid with respect to an identity-constraint 1. 2. 3.
4. The use of schemanormalized value in the definition of key sequence above meansthat default or fixed
value constraints may play apart in key sequences. is satisfied with respect to that item and that constraint,
or such that any of the element information item children of that item have an property whose value has
an entry for that constraint.

A nodetableisaset of pairs each consisting of a key-sequence and an element node.

Whenever an element information item has one or more eligible identity-constraints, in the post-schema-
validation infoset that element information item has a property as follows:

one ldentity-constraint Binding information item for each eligible identity-constraint, with properties as
follows: The eligible identity-constraint. A node table with one entry for every key-sequence (call it k)
and node (call it n) such that

1. Thereisan entry in one of the node tables associated with the in an | dentity-constraint Binding infor-
mation itemin at least one of the s of the element information item children of the element information
item whose key-sequence is k and whose nodeis n;

2. nappears with key-sequence k in the qualified node set for the .

provided no two entries have the same key-sequence but distinct nodes. Potential conflicts are resolved
by not including any conflicting entries which would have owed their inclusion to above. Note that if all
the conflicting entries arose under above, this means no entry at al will appear for the offending key-
sequence.

The complexity of the above arisesfrom thefact that keyref identity-constraints may be defined on domains distinct
from the embedded domain of the identity-constraint they reference, or the domains may be the same but self-

XML Schema Part 1: Structures

I dentity-constraint Definitions Page 85 of 124

embedding at some depth. In either case the node table for the referenced identity-constraint needs to propagate
upwards, with conflict resolution.

The Identity-constraint Binding information item, unlike others in this specification, is essentially an internal
bookkeeping mechanism. It is introduced to support the definition of Identity-constraint Satisfied For an element
information item to be locally valid with respect to an identity-constraint 1. 2. 3. 4. The use of schema normalized
value in the definition of key sequence above means that default or fixed value constraints may play apart in key
sequences. above. Accordingly, conformant processors may, but are not required to, expose them via propertiesin
the post-schema-validation infoset. In other words, the above constraints may be read as saying validation of
identity-constraints proceeds as if such infoset items existed.

3.11.6. Constraintson I dentity-constraint Definition Schema Components

All identity-constraint definitions (see § 3.11 — Identity-constraint Definitions on page 79) must satisfy
the following constraint.

cos: | dentity-constraint Definition Properties Correct

1. Thevalues of the properties of an identity-constraint definition must be as described in the property
tableau in § 3.11.1 — The Identity-constraint Definition Schema Component on page 79, modulo the
impact of § 5.3 — Missing Sub-components on page 117.

2. If theiskeyref, the cardinality of the must equal that of the of the.

cos. Selector Value OK
1. Themust be avalid XPath expression, as defined in [XPath].
2. A. It must conform to the following extended BNF:

Selector XPath expressions

] 1 [Selector = Path (' Path)*

1 2 [Path = (./1?Step (' Step)*

] 31 Step = : : "'|NameTest

] 4] NameTest = QName|"*' | NCName "' ™'

B. It must be an XPath expression involving the chi | d axis whose abbreviated form is as given
above.

For readability, whitespace may be used in selector XPath expressions even though not explicitly allowed
by the grammar: whitespace may be freely added within patterns before or after any token.

Lexical productions

[5] token ::

VT '@ | NameTest
S

[6] whitespace ::

When tokenizing, the longest possible token is always returned.

XML Schema Part 1: Structures

http://www.w3.org/TR/REC-xml-names/#NT-QName
http://www.w3.org/TR/REC-xml-names/#NT-NCName
http://www.w3.org/TR/REC-xml#NT-S

Page 86 of 124 Schema Component Details

cos: FieldsValue OK
1. Each member of the must be avalid XPath expression, as defined in [X Path].

2. A. It must conform to the extended BNF given above for Selector, with the following modification:

Path in Field XPath expressions
1 71 Pah = : : (UN?(Step'l')* (Step |'@ NameTest)
This production differs from the one above in allowing the fina step to match an attribute node.

B. It must bean XPath expressioninvolvingthechi | d and/orat t ri but e axeswhose abbreviated
formis as given above.

For readability, whitespace may be used in field XPath expressions even though not explicitly allowed by
the grammar: whitespace may be freely added within patterns before or after any token.

When tokenizing, the longest possible token is always returned.

3.12. Notation Declar ations
Notation declarations reconstruct XML 1.0 NOTATION declarations.

I:I <xs:notation nane="j peg" public="imge/jpeg" systenr"vi ewer.exe">

The XML representation of a notation declaration.

3.12.1. The Notation Declaration Schema Component
The notation declaration schema component has the following properties:

An NCName as defined by [XML-Namespaces]. Either absent or anamespace name, asdefined in [XML-
Namespaces]. Optional if is present. A URI reference. Optional if ispresent. A publicidentifier, as defined
in [XML 1.0 (Second Edition)]. Optional. An annotation.

Notation declarations do not participatein validation assuch. They are referenced in the course of validating
strings as members of the NOTATION simple type.

See § 3.13 — Annotations on page 88 for information on the role of the property.

3.12.2. XML Representation of Notation Declaration Schema Components

The XML representation for a notation declaration schema component is a element information item. The
correspondences between the properties of that information item and properties of the component it corre-
spondsto are as follows:

Theactual value of the nanme attribute The actual value of thet ar get Nanespace attribute of the parent
schenma element information item. The actual value of thesy st emattribute, if present, otherwise absent.
The actual value of the publ i ¢ attribute The annotation corresponding to the element information item
in the children, if present, otherwise absent.

XML Schema Part 1: Structures

Notation Declar ations Page 87 of 124

[:] <xs:notation nanme="j peg"
public="image/jpeg" systenmr"vi ewer.exe" />

<xs:el ement nanme="picture">
<xs: conpl exType>
<xs: si mpl eCont ent >
<xs: ext ensi on base="xs: hexBi nary">
<xs:attribute name="pictype">
<xs: si nmpl eType>
<xs:restriction base="xs: NOTATI ON'>
<xs:enuneration val ue="jpeg"/>
<xs:enuneration val ue="png"/>

</xs:restriction>
</ xs: si npl eType>
</ xs:attribute>
</ xs: ext ensi on>
</ xs: si npl eCont ent >
</ xs: conpl exType>
</ xs: el ement >

<pi cture pictype="jpeg">...</picture>

3.12.3. Constraintson XML Representations of Notation Declarations

src: Notation Definition Representation OK

In addition to the conditions imposed on element information items by the schemafor schemas, the corre-
sponding notation definition must satisfy the conditions set out in § 3.12.6 — Constraints on Notation
Declaration Schema Components on page 88.

3.12.4. Notation Declaration Validation Rules

None as such.

3.12.5. Notation Declaration Infor mation Set Contributions

sic: Validated with Notation

Whenever an attribute information item isvalid with respect to aNOTATION, in the post-schema-validation
infoset its parent element information item either has a property as follows:

An item isomorphic to the notation declaration whose and match the local name and namespace name (as
defined in QName Interpretation Where the type of an attribute information item in a document involved
in validation isidentified as QName, its actual value is composed of alocal name and a namespace name.
Its actual value is determined based on its normalized value and the containing element information item's
in-scope namespaces following : 1. 2. In the absence of the in-scope namespaces property in the infoset
for the schema document in question, processors must reconstruct equivalent information as necessary,
using the namespace attributes of the containing element information item and itsancestors.) of the attribute
item's actual value

XML Schema Part 1: Structures

Page 88 of 124 Schema Component Details

or has a pair of properties asfollows:
The value of the of that notation declaration. The value of the of that notation declaration.

|:| For compatibility, only one such attribute should appear on any given element. If more than one such attribute does
appear, which one supplies the infoset property or properties above is not defined.

3.12.6. Constraints on Notation Declaration Schema Components

All notation declarations (see § 3.12 — Notation Declarations on page 86) must satisfy the following con-
straint.

cos. Notation Declaration Correct

The values of the properties of a notation declaration must be as described in the property tableau in
§ 3.12.1 — The Notation Declaration Schema Component on page 86, modulo the impact of § 5.3 —
Missing Sub-components on page 117.

3.13. Annotations

Annotations provide for human- and machine-targeted annotations of schema components.

I:I <xs: si npl eType fn: note="special ">
<xs:annot ati on>
<xs:docunent ati on>A type for experts only</xs:documentation>
<xs: appi nf o>
<f n: speci al Handl i ng>checkFor Pri nes</ f n: speci al Handl i ng>
</ xs: appi nf o>
</ xs:annot ati on>

XML representations of three kinds of annotation.

3.13.1. The Annotation Schema Component
The annotation schema component has the following properties:

A sequence of element information items. A sequence of e ement information items. A sequence of attribute
information items.

is intended for human consumption, for automatic processing. In both cases, provision is made for an
optional URI reference to supplement the local information, as the value of the sour ce attribute of the
respective element information items. Validation does not invol ve dereferencing these URI's, when present.
In the case of , indication should be given asto the identity of the (human) language used in the contents,
usingthexm : | ang attribute.

ensures that when schema authors take advantage of the provision for adding attributes from namespaces
other than the XML Schema namespace to schema documents, they are available within the components
corresponding to the element items where such attributes appear.

XML Schema Part 1: Structures

Simple Type Definitions Page 89 of 124

Annotations do not participate in validation as such. Provided an annotation itself satisfies all relevant
Schema Component Constraints it cannot affect the validation of element information items.

3.13.2. XML Representation of Annotation Schema Components

Annotation of schemas and schema components, with material for human or computer consumption, is
provided for by alowing application information and human information at the beginning of most major
schema elements, and anywhere at the top level of schemas. The XML representation for an annotation
schema component is an element information item. The correspondences between the properties of that
information item and properties of the component it corresponds to are as follows:

A sequence of the element information items from among the children, in order, if any, otherwise the
empty sequence. A sequence of the element information items from among the children, in order, if any,
otherwise the empty sequence. A sequence of attribute information items, namely those allowed by the
attribute wildcard in the type definition for the item itself or for the enclosing items which correspond to
the component within which the annotation component is located.

The annotation component corresponding to the element in the example above will have one el ement item
in each of itsand and one attribute item iniits .

3.13.3. Constraintson XML Representations of Annotations

src: Annotation Definition Representation OK

In addition to the conditionsimposed on element information items by the schemafor schemas, the corre-
sponding annotation must satisfy the conditions set out in 8§ 3.13.6 — Constraints on Annotation Schema
Components on page 89.

3.13.4. Annotation Validation Rules

None as such.

3.13.5. Annotation Information Set Contributions

None as such: the addition of annotations to the post-schema-validation infoset is covered by the post-
schema-validation infoset contributions of the enclosing components.

3.13.6. Constraints on Annotation Schema Components

All annotations (see § 3.13 — Annotations on page 88) must satisfy the following constraint.

cos: Annotation Correct

The values of the properties of an annotation must be as described in the property tableau in § 3.13.1 —
The Annotation Schema Component on page 88, modulo the impact of § 5.3 — Missing Sub-components
on page 117.

3.14. Simple Type Definitions

This section consists of a combination of non-normative versions of normative material from [XML Schemas:
Datatypes], for local cross-reference purposes, and normative materia relating to the interface between schema
components defined in this specification and the simple type definition component.

XML Schema Part 1: Structures

Page 90 of 124 Schema Component Details

Simpletype definitions provide for constraining character information item children of element and attribute
information items.

I:I <xs: si npl eType name="f ahr enhei t Wt er Tenp" >
<xs:restriction base="xs: nunber">
<xs:fractionbDigits val ue="2"/>
<xs: m nExcl usi ve val ue="0.00"/>
<xs: maxExcl usi ve val ue="100. 00"/ >
</xs:restriction>
</ xs:sinmpl eType>

The XML representation of a simple type definition.

3.14.1. (non-nor mative) The Simple Type Definition Schema Component
The simple type definition schema component has the following properties:

Optional. An NCName as defined by [XM L-Namespaces]. Either absent or a namespace name, as defined
in [XML-Namespaces]. A simple type definition, which may be the . A set of constraining facets. A set
of fundamental facets. A subset of {extension, list, restriction, union}. One of {atomic, list, union}.
Depending on the value of , further properties are defined as follows:

atomic
A built-in primitive simple type definition.
list
A simple type definition.
union
A non-empty sequence of simple type definitions.

Optional. An annotation.

Simple types are identified by their and . Except for anonymous simple types (those with no), since type
definitions (i.e. both simple and complex type definitions taken together) must be uniquely identified
within an XML Schema, no simple type definition can have the same name as another simple or complex
type definition. Simple type s and s are provided for reference from instances (see § 2.6.1 — xsi:type on
page 12), and for usein the XML representation of schemacomponents (specifically inand). See§4.2.3—
References to schema components across namespaces on page 110 for the use of component identifiers
when importing one schema into another.

|:| The of asimple type is not ipso facto the (local) name of the element or attribute information items validated by
that definition. The connection between a name and a type definition is described in § 3.3 — Element Declarations
on page 22 and § 3.2 — Attribute Declarations on page 16.

A simple type definition with an empty specification for can be used as the for other types derived by
either of extension or restriction, or asthein the definition of alist, or in the of aunion; the explicit values
extension, restriction, list and union prevent further derivations by extension (to yield acomplex type) and
restriction (to yield asimple type) and use in constructing lists and unions respectively.

determines whether the simple type corresponds to an atomic, list or union type as defined by [XML
Schemas: Datatypes].

XML Schema Part 1: Structures

Simple Type Definitions Page 91 of 124

As described in § 2.2.1.1 — Type Definition Hierarchy on page 5, every simple type definition is a
restriction of some other simple type (the), which is the simple ur-type definition if and only if the type
definition in question is one of the built-in primitive datatypes, or alist or union type definition which is
not itself derived by restriction from alist or union respectively. Each atomic typeisultimately arestriction
of exactly one such built-in primitive datatype, whichisits.

for each simple type definition are selected from those defined in [XML Schemas: Datatypes]. For atomic
definitions, these are restricted to those appropriate for the corresponding . Therefore, the val ue space and
lexical space (i.e. what is validated by any atomic simple type) is determined by the pair (,).

As specified in [XML Schemas: Datatypes], list simple type definitions validate space separated tokens,
each of which conforms to a specified simple type definition, the . The item type specified must not itself
bealist type, and must be one of thetypesidentified in [XML Schemas. Datatypes] as asuitableitem type
for alist simpletype. In this case the apply to thelist itself, and are restricted to those appropriate for lists.

A union simple type definition validates strings which satisfy at least one of its. Asin the case of list, the
apply to the union itself, and are restricted to those appropriate for unions.

The simple ur-type definition must not be named asthe of any user-defined atomic simpletype definitions:
asit has no constraining facets, this would be incoherent.

See § 3.13 — Annotations on page 88 for information on the role of the property.
3.14.2. (non-nor mative) XM L Representation of SmpleType Definition Schema Components

|:| This section reproduces aversion of material from [XML Schemas: Datatypes], for local cross-reference purposes.

Theactual value of thenane attributeif present, otherwise absent. The actual value of thet ar get Nanes-
pace attribute of the ancestor element information item if present, otherwise absent.

1. thedlternativeischosen

the type definition to by the actual value of the base attribute of , if present, otherwise the type defi-
nition corresponding to the among the children of .

2. theor aternativeis chosen
the..

Asfor the property of complex type definitions, but using thef i nal andfi nal Def aul t attributesin
placeof thebl ock and bl ockDef aul t attributesand with therelevant set being { extension, restriction,
list, union} . If the dternativeis chosen, thenlist, otherwiseif the alternative is chosen, then union, otherwise
(the alternative is chosen), then the of the .

If theis atomic, the following additional property mappings also apply:

The built-in primitive type definition from which the is derived. A set of facet components constituting a
restriction of the of the with respect to a set of facet components corresponding to the appropriate el ement
information items among the children of (i.e. those which specify facets, if any), asdefined in Simple Type
Restriction (Facets) For a simple type definition (call it R) to restrict another simple type definition (call

it B) with a set of facets (call this S) 1. 2. 3. If above holds, the of R constitute a restriction of the of B
withrespectto S. .

If theislist, the following additional property mappings also apply:

1. thedlternativeischosen

XML Schema Part 1: Structures

Page 92 of 124 Schema Component Details

the type definition to by the actual value of thei t enTType attribute of , if present, otherwise the type
definition corresponding to the among the children of .

2. theoptionischosen
the of the .

If the alternative is chosen, a set of facet components constituting a restriction of the of the with respect
to aset of facet components corresponding to the appropriate el ement information items among the children
of (i.e. those which specify facets, if any), as defined in Simple Type Restriction (Facets) For a simple
type definition (call it R) to restrict another simple type definition (call it B) with a set of facets (call this
S) 1. 2. 3. If above holds, the of R constitute a restriction of the of B with respect to S. , otherwise the
empty set.

If theisunion, the following additional property mappings also apply:

1. theadternativeischosen

define the explicit members as the type definitions to by the itemsin the actual value of the menber -
Types attribute, if any, followed by the type definitions corresponding to the s among the children
of , if any. The actual value is then formed by replacing any union type definition in the explicit
members with the members of their , in order.

2. theoptionischosen
the of the .

If the alternative is chosen, a set of facet components constituting a restriction of the of the with respect
to aset of facet components corresponding to the appropriate el ement information items among the children
of (i.e. those which specify facets, if any), as defined in Simple Type Restriction (Facets) For a simple
type definition (call it R) to restrict another simple type definition (call it B) with a set of facets (call this
S) 1. 2. 3. If above holds, the of R constitute a restriction of the of B with respect to S. , otherwise the
empty set.

3.14.3. Constraintson XML Representations of Simple Type Definitions

src: Simple Type Definition Representation OK
In addition to the conditions imposed on element information items by the schema for schemas,

1. The corresponding simple type definition, if any, must satisfy the conditions set out in § 3.14.6 —
Constraints on Simple Type Definition Schema Components on page 93.

If the alternative is chosen, either it must have abase attribute or aamong its children, but not both.

3. If the dternative is chosen, either it must have an i t enilype attribute or a among its children, but
not both.

4. Circular union type definitionisdisallowed. That is, if the aternative is chosen, there must not be any
entries in the menber Types attribute at any depth which resolve to the component corresponding
tothe.

XML Schema Part 1: Structures

Simple Type Definitions Page 93 of 124

3.14.4. Simple Type Definition Validation Rules

cvc: String Valid
For astring to be locally valid with respect to a simple type definition

1. It is schema-valid with respect to that definition as defined by Datatype Valid in [XML Schemas:
Datatypes].

2. A. Thedefinition isENTITY or isvalidly derived from ENTITY given the empty set, as defined in

Type Derivation OK (Simple) For a simple type definition (call it D, for derived) to be validly

derived from atype definition (call this B, for base) given a subset of { extension, restriction, list,
union} (of which only restriction is actually relevant) 1. 2.

the string must be a declared entity name.

B. ThedefinitionisENTITIES or isvalidly derived from ENTITIES given the empty set, as defined
in Type Derivation OK (Simple) For a simple type definition (call it D, for derived) to be validly
derived from atype definition (call this B, for base) given a subset of { extension, restriction, list,
union} (of which only restriction is actually relevant) 1. 2.

every whitespace-delimited substring of the string must be a declared entity name.
C. no further condition applies.
A string is a declared entity name if it is equal to the name of some unparsed entity information item in

the value of the unparsedEntities property of the document information item at the root of the infoset
containing the element or attribute information item whose normalized value the string is.

3.14.5. Simple Type Definition Information Set Contributions

None as such.

3.14.6. Constraintson Simple Type Definition Schema Components

All simple type definitions other than the and the built-in primitive datatype definitions (see § 3.14 —
Simple Type Definitions on page 89) must satisfy both the following constraints.

cos: Simple Type Definition Properties Correct

1. Thevalues of the properties of a simple type definition must be as described in the property tableau
in Datatype definition, modulo the impact of § 5.3 — Missing Sub-components on page 117.

2. All smple type definitions must be derived ultimately from the circular definitions are disallowed).
That is, it must be possible to reach a built-in primitive datatype or the by repeatedly following the.

3. The of the must not contain restriction.

cos. Derivation Valid (Restriction, Simple)
1. theisatomic
A. The must be an atomic simple type definition or a built-in primitive datatype.

B. The of the must not contain restriction.

XML Schema Part 1: Structures

http://www.w3.org/TR/2004/REC-xmlschema-2-20041028/datatypes.html#dc-defn

Page 94 of 124

Schema Component Details

C. For each facet in the (call this DF)

i. DF must be an allowed constraining facet for the , as specified in the appropriate subsection
of 3.2 Primitive datatypes.

ii. If thereisafacet of the same kind in the of the (call this BF),then the DF's value must be a
valid restriction of BF's value as defined in [XML Schemas: Datatypes].

2. theislist

A. The must have a of atomic or union (in which case all the must be atomic).

B.
C.

3. theisunion

i. theisthe

a)
b)
ii. a
b)
c)

d)

The of the must not contain list.

The must only contain the whiteSpace facet component.

The must have a of list.
The of the must not contain restriction.

The must be validly derived from the 's given the empty set, as defined in Type Derivation
OK (Simple) For asimpletypedefinition (call it D, for derived) to be validly derived from
atypedefinition (call thisB, for base) given asubset of { extension, restriction, list, union}
(of which only restriction is actually relevant) 1. 2. .

Only length, minLength, maxL ength, whiteSpace, pattern and enumeration facet compo-
nents are allowed among the .

For each facet in the (call this DF), if there is a facet of the same kind in the of the (call
this BF),then the DF's value must be avalid restriction of BF'svalue as defined in [XML
Schemas: Datatypes].

Thefirst case above will apply when alist is derived by specifying an item type, the second when
derived by restriction from another list.

A. Themust all have of atomic or list.

B.
C.

i. theisthe

a)
b)
ii. a
b)
c)

All of the must have a which does not contain union.

The must be empty.

The must have a of union.
The of the must not contain restriction.

The, in order, must be validly derived from the corresponding type definitions in the 's
giventheempty set, asdefined in Type Derivation OK (Simple) For asimpletype definition
(cdl it D, for derived) to be validly derived from a type definition (call this B, for base)

XML Schema Part 1: Structures

http://www.w3.org/TR/2004/REC-xmlschema-2-20041028/datatypes.html#built-in-primitive-datatypes

Simple Type Definitions Page 95 of 124

given a subset of { extension, restriction, list, union} (of which only restrictionis actually
relevant) 1. 2. .

d) Only pattern and enumeration facet components are allowed among the .

€) For each facet in the (call this DF), if there is a facet of the same kind in the of the (call
this BF),then the DF's value must be avalid restriction of BF'svalue as defined in [XML
Schemas: Datatypes].

Thefirst case above will apply when aunion is derived by specifying one or more member types,
the second when derived by restriction from another union.

If this constraint Derivation Valid (Restriction, Simple) 1. 2. 3. If this constraint holds of a ssimple type
definition, it isavalid restriction of its base type definition. holds of a simple type definition, it isavalid
restriction of its.

The following constraint defines relations appeal ed to elsewhere in this specification.

cos: Type Derivation OK (Simple)
For a simple type definition (cal it D, for derived) to be validly derived from a type definition (call this

B, for base) given a subset of { extension, restriction, list, union} (of which only restriction is actualy rel-
evant)

1. They are the same type definition.
2. A. restrictionisnot in the subset, or in the of itsown ;
B. i. D'sisB.
ii. D'sisnottheandisvalidly derived from B given the subset, as defined by this constraint.
iii. D'sislistor unionand B isthe.

iv. B'sisunionand D isvalidly derived from atype definition in B's given the subset, as defined
by this constraint.

|:| With respect to , see the Note on identity at the end of The wording of above appeals to a notion of component
identity which is only incompletely defined by this version of this specification. In some cases, the wording of this
specification does make clear the rules for component identity. These cases include: When they are both top-level
components with the same component type, namespace name, and local name; When they are necessarily the same
type definition (for example, when the two types definitions in question are the type definitions associated with
two attribute or element declarations, which are discovered to be the same declaration); When they are the same
by construction (for example, when an element's type definition defaults to being the same type definition as that
of its substitution-group head or when a complex type definition inherits an attribute declaration from its base type
definition). In other cases two conforming implementations may disagree as to whether components are identical.
above.

cos: Simple Type Restriction (Facets)

For a simple type definition (call it R) to restrict another simple type definition (call it B) with a set of
facets (call this S)

1. Theof Risthe same asthat of B.

XML Schema Part 1: Structures

Page 96 of 124 Schema Component Details

2. If isatomic, the of R isthe same as that of B.

3. Theof Raretheunion of Sand the of B, eliminating duplicates. To eliminate duplicates, when afacet
of the same kind occursin both S and the of B, the one in the of B is not included, with the exception
of enumeration and pattern facets, for which multiple occurrences with distinct values are allowed.

Additional constraint(s) may apply depending on the kind of facet, see the appropriate sub-section of
4.3 Constraining Facets

If above holds, the of R constitute a restriction of the of B with respect to S.

3.14.7. Built-in Simple Type Definition

Thereisasimpletype definition nearly equivalent to the simple ur-type definition present in every schema
by definition. It has the following properties:

Simple Type Definition of the Ur-Type anySimpleType http://www.w3.0rg/2001/X M L Schema The empty
set absent

The ssimple ur-type definition is the root of the simple type definition hierarchy, and as such mediates
between the other simple type definitions, which all eventually trace back to it via their properties, and
the ur-type definition, which is its . This is why the is exempted from the first clause of Simple Type
Definition Properties Correct 1. 2. 3. , which would otherwise bar it because of its derivation from a
complex type definition and absence of .

Simple type definitions for all the built-in primitive datatypes, namely string, boolean, float, double,
number, dateTime, duration, time, date, gMonth, gMonthDay, gDay, gYear, gYearMonth, hexBinary,
base64Binary, anyURI (see the Primitive Datatypes section of [XML Schemas: Datatypes]) are present
by definition in every schema. All are in the XML Schema (namespace name
ht t p: // www. w3. or g/ 2001/ XM_Schenm), have an atomic with an empty and the simple ur-type
definition astheir and themselves as .

Similarly, smple type definitions for all the built-in derived datatypes (see the Derived Datatypes section
of [XML Schemas: Datatypes]) are present by definition in every schema, with properties as specified in
[XML Schemas:. Datatypes] and asrepresentedin XML in Appendix A — Schemafor Schemas (normative)
on page 118.

3.15. Schemas asaWhole

A schema consists of a set of schema components.

[:] <xs:schemn
xm ns: xs="http://ww. w3. org/ 2001/ XM_Scherma"
t ar get Nanmespace="ht t p: / / ww. exanpl e. coni exanpl e" >

</ xs: schema>

The XML representation of the skeleton of a schema.

3.15.1. The Schema I tself

At the abstract level, the schemalitself isjust a container for its components.

XML Schema Part 1: Structures

http://www.w3.org/TR/2004/REC-xmlschema-2-20041028/datatypes.html#rf-facets

SchemasasaWhole Page 97 of 124

A set of named simple and complex type definitions. A set of named (top-level) attribute declarations. A
set of named (top-level) element declarations. A set of named attribute group definitions. A set of named
model group definitions. A set of notation declarations. A set of annotations.

3.15.2. XML Representations of Schemas

A schemaisrepresented in XML by one or more schema documents, that is, one or more element informa-
tionitems. A schema document contains representations for a collection of schemacomponents, e.g. type
definitions and element declarations, which have acommon target namespace. A schemadocument which
has one or more element information items corresponds to a schema with components with more than one
target namespace, see Import Constraints and Semantics |n addition to the conditions imposed on element
information items by the schemafor schemas 1. 2. 3. It isnot an error for the application schemareference
strategy to fail. It is an error for it to resolve but the rest of above to fail to be satisfied. Failure to find a
referent may well cause |ess than compl ete assessment outcomes, of course. The schema components (that
is,,,,,) of aschema corresponding to aelement information item with one or more element information
items must include not only definitions or declarations corresponding to the appropriate members of its
children, but a so, for each of those element information itemsfor which aboveis satisfied, aset of schema
components identical to all the schema components of I. .

The simple and complex type definitions corresponding to all the and element information items in the
children, if any, plus any included or imported definitions, see § 4.2.1 — Assembling a schemafor asingle
target namespace from multiple schema definition documents on page 105 and § 4.2.3 — References to
schema components across namespaces on page 110. The (top-level) attribute declarations corresponding
to al the element information itemsin the children, if any, plus any included or imported declarations, see
8 4.2.1 — Assembling a schemafor a single target namespace from multiple schema definition documents
on page 105 and § 4.2.3 — References to schema components across namespaces on page 110. The (top-
level) element declarations corresponding to all the element information itemsin the children, if any, plus
any included or imported declarations, see § 4.2.1 — Assembling a schema for a single target namespace
from muiltiple schema definition documents on page 105 and § 4.2.3 — References to schema components
across hamespaces on page 110. The attribute group definitions corresponding to all the element information
itemsin the children, if any, plus any included or imported definitions, see § 4.2.1 — Assembling a schema
for asingletarget namespace from multiple schema definition documents on page 105 and § 4.2.3 — Refer-
ences to schema components across namespaces on page 110. The model group definitions corresponding
to all the element information itemsin the children, if any, plus any included or imported definitions, see
8 4.2.1 — Assembling a schemafor a single target namespace from multiple schema definition documents
on page 105 and § 4.2.3 — References to schema components across namespaces on page 110. The notation
declarations corresponding to all the element information items in the children, if any, plus any included
or imported declarations, see § 4.2.1 — Assembling a schema for a single target namespace from multiple
schemadefinition documents on page 105 and § 4.2.3 — References to schema components across namespaces
on page 110. The annotations corresponding to all the element information items in the children, if any.
Note that none of the attribute information items displayed above correspond directly to properties of
schemas. The bl ockDef aul t, fi nal Def aul t, attri but eFor mDef aul t, el ement For nDe-
faul t and t ar get Nanespace attributes are appealed to in the sub-sections above, as they provide
global information applicable to many representation/component correspondences. The other attributes
(i d andver si on) arefor user convenience, and this specification defines no semantics for them.

The definition of the schema abstract datamodel in § 2.2 — XML SchemaAbstract Data Model on page 4
makes clear that most components have atarget namespace. M ost components corresponding to represen-
tations within a given element information item will have a target namespace which corresponds to the
t ar get Namespace attribute.

XML Schema Part 1: Structures

Page 98 of 124 Schema Component Details

Sincethe empty string isnot alegal namespace name, supplying an empty stringfort ar get Nanmespace
is incoherent, and is not the same as not specifying it at all. The appropriate form of schema document
corresponding to aschemawhose components have noisonewhich hasnot ar get Nanespace attribute
specified at all.

|:| The XML namespaces Recommendation discusses only instance document syntax for elements and attributes; it
therefore provides no direct framework for managing the names of type definitions, attribute group definitions,
and so on. Neverthel ess, the specification appliesthe target namespace facility uniformly to all schemacomponents,
i.e. not only declarations but also definitions have a target namespace.

Although the example schema at the beginning of this section might be a complete XML document, need
not be the document element, but can appear within other documents. Indeed there is no requirement that
a schema correspond to a (text) document at al: it could correspond to an element information item con-
structed 'by hand', for instance viaa DOM-conformant API.

Aside from and , which do not correspond directly to any schema component at all, each of the element
information items which may appear in the content of corresponds to a schema component, and all except
are named. The sections below present each such item in turn, setting out the componentsto which it may
correspond.

3.15.2.1. References to Schema Components

Reference to schema components from a schema document is managed in a uniform way, whether the
component corresponds to an element information item from the same schema document or is imported
(8 4.2.3 — References to schema components across namespaces on page 110) from an external schema
(which may, but need not, correspond to an actual schema document). The form of all such referencesis
aQName.

A QName is a name with an optional namespace qualification, as defined in [XML-Namespaces]. When
used in connection with the XML representation of schema components or references to them, this refers
to the simple type QName as defined in [XML Schemas: Datatypes).

An NCName is a name with no colon, as defined in [XML-Namespaces]. When used in connection with
the XML representation of schema componentsin this specification, thisrefersto the simpletype NCName
as defined in [XML Schemas: Datatypes].

In each of the XML representation expositions in the following sections, an attribute is shown as having
type QNan® if and only if it isinterpreted as referencing a schema component.

[:] <xs: schema xm ns: xs="htt p: // ww. w3. or g/ 2001/ XM_Schena"
xm ns: xhtm ="http: // ww. w3. or g/ 1999/ xht m *
xm ns="htt p://ww. exanpl e. cont
tar get Nanespace="htt p: // ww. exanpl e. cont' >
<xs:el ement nane="el enl" type="Address"/>

<xs:el ement nane="el enR" type="xhtnmn : bl ockquote"/>

<xs:attribute name="attr1"
type="xsl:quantity"/>

XML Schema Part 1: Structures

SchemasasaWhole Page 99 of 124
</ xs: schema>

Thefirst of theseis most probably alocal reference, i.e. areference to atype definition corresponding to a element
information item located el sewhere in the schema document, the other two refer to type definitions from schemas
for other namespaces and assume that their namespaces have been declared for import. See § 4.2.3 — References
to schema components across namespaces on page 110 for a discussion of importing.

3.15.2.2. Referencesto Schema Components from Elsewhere

The names of schema components such as type definitions and element declarations are not of type ID:
they are not unique within aschema, just within asymbol space. Thismeansthat simple fragment identifiers
will not always work to reference schema components from outside the context of schema documents.

There is currently no provision in the definition of the interpretation of fragment identifiers for the
t ext/ xm MIME type, which is the MIME type for schemas, for referencing schema components as
such. However, [XPointer] provides a mechanism which maps well onto the notion of symbol spaces as
it is reflected in the XML representation of schema components. A fragment identifier of the form
#xpoi nt er (xs: schema/ xs: el enent [@ane="person"]) will uniquely identify the represen-
tation of atop-level element declaration with nameper son, and similar fragment identifiers can obviously
be constructed for the other global symbol spaces.

Short-form fragment identifiers may also be used in some cases, that iswhen aDTD or XML Schemais
available for the schema in question, and the provision of ani d attribute for the representations of all
primary and secondary schema components, which is of type ID, has been exploited.

It is a matter for applications to specify whether they interpret document-level references of either of the
above varieties as being to the relevant element information item (i.e. without specia recognition of the
relation of schemadocumentsto schema components) or as being to the corresponding schema component.

3.15.3. Constraintson XML Representations of Schemas

src. QName Interpretation

Where the type of an attribute information item in a document involved in validation is identified as
QName, itsactual valueiscomposed of alocal name and anamespace name. Itsactual valueisdetermined
based onits normalized val ue and the contai ning € ement information item'sin-scope namespaces following
[XML-Namespaces]|:

1. itsnormalized value is prefixed
A. There must be a namespace in the in-scope namespaces whose prefix matches the prefix.
B. its namespace name is the namespace name of that namespace.

C. lItslocal nameisthe portion of its normalized value after the colon (* :).

2. (itsnormalized value is unprefixed)
A. itsloca nameisits normalized value.
B. i. thereisanamespacein the in-scope namespaces whose prefix has no value
its namespace hame is the namespace name of that namespace.

ii. its namespace name is absent.

XML Schema Part 1: Structures

Page 100 of 124 Schema Component Details

In the absence of the in-scope namespaces property in the infoset for the schema document in question,
processors must reconstruct equivalent information as necessary, using the namespace attributes of the
containing element information item and its ancestors.

Whenever the word resolve in any form is used in this chapter in connection with a QName in a schema
document, the following definition QName resolution (Schema Document) For a QName to resolve to a
schema component of a specified kind 1. 2. 3. 4. should be understood:

src. QName resolution (Schema Document)
For a QName to resolve to a schema component of a specified kind

1. That component isamember of the value of the appropriate property of the schemawhich corresponds
to the schema document within which the QName appears, that is

A. thekind specified is simple or complex type definition
the property isthe.

B. thekind specified is attribute declaration
the property isthe.

C. thekind specified is element declaration
the property isthe.

D. thekind specified is attribute group
the property isthe.

E. thekind specified is model group
the property isthe.

F. thekind specified is notation declaration
the property isthe.

2. The component's name matches the local name of the QName;
3. The component's target namespace is identical to the namespace name of the QName;
4. A. the namespace name of the QName is absent

i. Theeement information item of the schema document containing the QName hasno't ar -
get Namespace attribute.

ii. Theelement information item of the that schema document contains an element information
item with no namespace attribute.
B. the namespace name of the QName isthe same as

i. Theactua valueof thet ar get Nanespace attribute of the element information item of the
schema document containing the QName.

ii. Theactua value of the nanespace attribute of some element information item contained in
the element information item of that schema document.

XML Schema Part 1: Structures

SchemasasaWhole Page 101 of 124

3.15.4. Validation Rulesfor Schemas asaWhole

Asthediscussion above at § 3— Schema Component Details on page 13 makesclear, at thelevel of schema
components and validation, reference to components by name is normally not involved. In afew cases,
however, qualified names appearing in information items being validated must be resolved to schema
components by such lookup. The following constraint is appealed to in these cases.

cvc: QName resolution (Instance)

A pair of alocal name and a hamespace name (or absent) resolve to a schema component of a specified
kind in the context of validation by appeal to the appropriate property of the schema being used for the
assessment. Each such property indexes components by name. The property to use is determined by the
kind of component specified, that is,

1. thekind specified is simple or complex type definition
the property isthe.

2. thekind specified is attribute declaration
the property isthe.

3. thekind specified is element declaration
the property isthe.

4. thekind specified is attribute group
the property isthe.

5. thekind specified is model group
the property isthe.

6. thekind specified is notation declaration
the property isthe.

The component resolved to is the entry in the table whose name matches the local name of the pair and
whose target namespace is identical to the namespace name of the pair.

3.15.5. Schema I nformation Set Contributions

sic: Schema | nformation

Schema components provide a wealth of information about the basis of assessment, which may well be
of relevance to subsequent processing. Reflecting component structure into a form suitable for inclusion
in the post-schema-validation infoset is the way this specification provides for making this information
available.

Accordingly, by anitemisomor phic to acomponent ismeant an information item whosetypeisequivalent
to the component's, with one property per property of the component, with the same name, and value either
the same atomic value, or an information item corresponding in the same way to its component value,
recursively, as necessary.

Processors must add a property in the post-schema-validation infoset to the element information item at
which assessment began, as follows:

XML Schema Part 1: Structures

Page 102 of 124 Schema Component Details

A set of namespace schema information information items, one for each namespace name which appears
as the target namespace of any schema component in the schema used for that assessment, and one for
absent if any schema component in the schema had no target namespace. Each namespace schemainfor-
mation information item hasthefollowing properties and values: A namespace name or absent. A (possibly
empty) set of schema component information items, each one an item isomorphic to a component whose
target namespace is the sibling property above, drawn from the schema used for assessment. A (possibly
empty) set of schema document information items, with properties and values asfollows, for each schema
document which contributed components to the schema, and whose t ar get Nanespace matches the
sibling property above (or whose t ar get Namespace was absent but that contributed components to
that namespace by being d by a schema document with that t ar get Namespace as per § 4.2.1 —
Assembling aschemafor asingletarget namespace from multiple schema definition documents on page 105):
Either aURI reference, if available, otherwise absent A document information item, if available, otherwise
absent.

The property is provided for processors which wish to provide a single access point to the components of
the schema which was used during assessment. Lightweight processors are free to leave it empty, but if it
isprovided, it must contain at aminimum all thetop-level (i.e. named) components which actually figured
in the assessment, either directly or (because an anonymous component which figured is contained within)
indirectly.

sic: ID/IDREF Table

In the post-schema-validation infoset a set of 1D/IDREF binding information items is associated with the
validation root element information item:

A (possibly empty) set of ID/IDREF binding information items, as specified bel ow.
Let the eligible item set be the set of consisting of every attribute or element information item for which

1. itsvalidation context is the validation root;

2. itwassuccessfully validated with respect to an attribute declaration as per Attribute Locally Valid For
an attribute information item to be locally valid with respect to an attribute declaration 1. 2. 3. 4. or
element declaration as per Element Locally Valid (Element) For an element information item to be
locally valid with respect to an element declaration 1. 2. 3. 4. 5. 6. 7. (as appropriate) whose attribute
or element (respectively) isthe built-in 1D, IDREF or IDREFS simple type definition or atype derived
from one of them.

Then thereis one ID/IDREF binding in the for every distinct string which is

1. theactual value of amember of the eligible item set whose type definition is or is derived from ID or
IDREF,;

2. oneof theitemsin the actual value of amember of the eligible item set whose type definitionisoris
derived from IDREFS.

Each ID/IDREF binding has properties as follows:
The string identified above. A set consisting of every element information item for which
1. itsisthevalidation root;

2. ithasan attributeinformationiteminitsattributes or an element information iteminitschildren which
was validated by the built-in ID simpletype definition or atype derived from it whose schemanormal -
ized value is the of this ID/IDREF binding.

XML Schema Part 1: Structures

SchemasasaWhole Page 103 of 124

The net effect of the above is to have one entry for every string used as an id, whether by declaration or
by reference, associated with those elements, if any, which actually purport to have that id. See Validation
Root Valid (ID/IDREF) For an element information item which is the validation root to be valid 1. 2. See
for the definition of 1D/IDREF binding. The first clause above applies when there is a reference to an
undefined ID. The second applies when there is a multiply-defined ID. They are separated out to ensure
that distinct error codes (see) are associated with these two cases. Although thisrule applies at the validation
root, in practice processors, particularly streaming processors, may wish to detect and signal the case as
it arises. This reconstruction of 's ID/IDREF functionality is imperfect in that if the validation root is not
the document element of an XML document, the resultswill not necessarily be the same asthose avalidating
parser would give were the document to have aDTD with equivalent declarations. above for the validation
rule which actually checksfor errors here.

|:| The ID/IDREF binding information item, unlike most other aspects of this specification, is essentially an interna
bookkeeping mechanism. It is introduced to support the definition of Validation Root Valid (ID/IDREF) For an
element information item which isthe validation root to be valid 1. 2. See for the definition of 1D/IDREF binding.
The first clause above applies when there is a reference to an undefined ID. The second applies when there is a
multiply-defined ID. They are separated out to ensure that distinct error codes (see) are associated with these two
cases. Although this rule applies at the validation root, in practice processors, particularly streaming processors,
may wish to detect and signal the case asit arises. This reconstruction of 's |D/IDREF functionality isimperfect in
that if the validation root is not the document element of an XML document, the results will not necessarily be the
same asthose avalidating parser would give were the document to have aDTD with equival ent declarations. above.
Accordingly, conformant processors may, but are not required to, expose it in the post-schema-validation infoset.
In other words, the above constraint may be read as saying assessment proceeds as if such an infoset item existed.

3.15.6. Constraintson SchemasasaWhole
All schemas (see 8§ 3.15 — Schemas as a\Whole on page 96) must satisfy the following constraint.

cos. Schema Properties Correct

1. The vaues of the properties of a schema must be as described in the property tableau in 8 3.15.1 —
The Schema Itself on page 96, modulo the impact of § 5.3 — Missing Sub-components on page 117,

2. Eachof the, ,, and must not contain two or more schema components with the same name and target
namespace.

4. Schemas and Namespaces: Access and Composition

This chapter defines the mechanisms by which this specification establishes the necessary precondition
for assessment, namely access to one or more schemas. This chapter also sets out in detail the relationship
between schemas and namespaces, as well as mechanisms for modularization of schemas, including pro-
vision for incorporating definitions and declarations from one schema in another, possibly with modifica-
tions.

§ 2.4 — Conformance on page 10 describes three levels of conformance for schema processors, and 8 5 —
Schemas and Schema-validity Assessment on page 115 provides aformal definition of assessment. This
section sets out in detail the 3-layer architecture implied by the three conformance levels. The layers are:

1. The assessment core, relating schema components and instance information items;

XML Schema Part 1: Structures

Page 104 of 124 Schemas and Namespaces; Access and Composition

2. Schema representation: the connections between XML representations and schema components,
including the relationships between hamespaces and schema components;

3. XML Schema web-interoperability guidelines: instance->schema and schema->schema connections
for the WWW.

Layer 1 specifies the manner in which a schema composed of schemacomponents can be applied to in the
assessment of an instance element information item. Layer 2 specifies the use of elementsin XML docu-
ments as the standard XML representation for schema information in a broad range of computer systems
and execution environments. To support interoperation over the World Wide Web in particular, layer 3
provides a set of conventions for schema reference on the Web. Additional details on each of the three
layersis provided in the sections below.

4.1. Layer 1. Summary of the Schema-validity Assessment Core

The fundamental purpose of the assessment core is to define assessment for a single element information
item and its descendants with respect to acomplex type definition. All processors are required to implement
this core predicate in a manner which conforms exactly to this specification.

assessment is defined with reference to an XML Schema (note not a schema document) which consists of
(at aminimum) the set of schema components (definitions and declarations) required for that assessment.
Thisis not acircular definition, but rather a post facto observation: no element information item can be
fully assessed unless all the components required by any aspect of its (potentially recursive) assessment
are present in the schema.

As specified above, each schema component is associated directly or indirectly with atarget namespace,
or explicitly with no namespace. In the case of multi-namespace documents, components for more than
one target namespace will co-exist in aschema.

Processors have the option to assemble (and perhaps to optimize or pre-compile) the entire schema prior
to the start of an assessment episode, or to gather the schemalazily asindividual components are required.
Inal casesitisrequired that:

» Theprocessor succeed in locating the schema componentstransitively required to compl ete an assessment
(note that components derived from schema documents can be integrated with components obtained
through other means);

* no definition or declaration changes once it has been established,;

 if the processor choosesto acquire declarations and definitions dynamically, that there be no side effects
of such dynamic acquisition that would cause the results of assessment to differ from that which would
have been obtained from the same schema components acquired in bulk.

|:| the assessment core is defined in terms of schema components at the abstract level, and no mention is made of the
schema definition syntax (i.e.). Although many processors will acquire schemasin this format, others may operate
on compiled representations, on a programmatic representation as exposed in some programming language, etc.

The obligation of a schema-aware processor as far as the assessment core is concerned is to implement
one or more of the options for assessment given below in § 5.2 — Assessing Schema-Validity on page 116.
Neither the choice of element information item for that assessment, nor which of the means of initiating
assessment are used, is within the scope of this specification.

XML Schema Part 1: Structures

Layer 2: Schema Documents, Namespaces and Composition Page 105 of 124

Although assessment is defined recursively, it isa so intended to beimplementablein streaming processors.
Such processors may choose to incrementally assemble the schema during processing in response, for
example, to encountering new namespaces. Theimplication of the invariants expressed above isthat such
incremental assembly must result in an assessment outcomethat isthe same aswould be givenif assessment
was undertaken again with the final, fully assembled schema.

4.2. Layer 2: Schema Documents, Namespaces and Composition

The sub-sections of § 3 — Schema Component Details on page 13 define an XML representation for type
definitions and element declarations and so on, specifying their target namespace and collecting theminto
schema documents. The two following sections relate to assembling a complete schema for assessment
from multiple sources. They should not be understood as aform of text substitution, but rather as providing
mechanismsfor distributed definition of schemacomponents, with appropriate schema-specific semantics.

|:| The core assessment architecture requiresthat a complete schemawith all the necessary declarationsand definitions
be available. This may involve resolving both instance->schema and schema->schema references. As observed
earlier in § 2.4 — Conformance on page 10, the precise mechanisms for resolving such references are expected to
evolve over time. In support of such evolution, this specification observes the design principle that references from
one schema document to a schema use mechanisms that directly parallel those used to reference a schemafrom an
instance document.

|:| In the sections below, "schemalocation” really belongs at layer 3. For convenience, it is documented with the layer
2 mechanisms of import and include, with which it is closely associated.

4.2.1. Assembling a schema for a single target namespace from multiple schema definition
documents

Schema components for asingle target namespace can be assembled from several schema documents, that
is several element information items:

A information item may contain any number of elements. Their schenalLocat i on attributes, consisting
of aURI reference, identify other schema documents, that isinformation items.

The XML Schema corresponding to contains not only the components corresponding to its definition and
declaration children, but also all the components of al the XML Schemas corresponding to any d schema
documents. Such included schema documents must either (a) have the samet ar get Nanespace asthe
ing schema document, or (b) no t ar get Namespace at al, in which case the d schema document is
converted to the ing schema document'st ar get Nanespace.

src: Inclusion Constraints and Semantics
In addition to the conditions imposed on element information items by the schema for schemas,

1. If theactual value of theschenaLocat i on attribute successfully resolves

A. ltresolvesto (afragment of) aresourcewhichisan XML document (of typeappl i cati on/ xm
ort ext/xm with an XML declaration for preference, but thisis not required), which in turn
corresponds to a element information item in awell-formed information set, which in turn corre-
spondsto avalid schema.

B. Itresolvestoaeement informationiteminawell-formed information set, which in turn corresponds
to avalid schema

XML Schema Part 1: Structures

Page 106 of 124 Schemas and Namespaces; Access and Composition

In either case call thed item Sl1, the valid schemal and the ing item's parent item SI'.

2. A. Sll hasat ar get Namespace attribute, and its actual valueisidentical to the actual value of the
t ar get Nanespace attribute of SII’ (which must have such an attribute).

B. Neither SII nor SII’ have at ar get Nanespace attribute.
C. Sll hasnot ar get Nanespace attribute (but SII’ does).
3. A. oraboveissatisfied

the schema corresponding to SII' must include not only definitions or declarations corresponding
to the appropriate members of its own children, but also components identical to all the schema
components of |.

B. aboveissatisfied

the schema corresponding to the d item'’s parent must include not only definitions or declarations
corresponding to the appropriate members of its own children, but also components identical to
all the schema components of |, except that anywhere the absent target namespace name would
have appeared, the actual value of thet ar get Nanespace attribute of SII’ isused. In particular,
it replaces absent in the following places:

i. Thetarget namespace of named schema components, both at the top level and (in the case of
nested type definitions and nested attribute and element declarationswhose code was qudified)
nested within definitions;

ii. Theof awildcard, whether negated or not;

It isnot an error for the actual value of the schenalLocat i on attribute to fail to resolveit al, in which
case no corresponding inclusion is performed. It is an error for it to resolve but the rest of clause 1 above
tofail to be satisfied. Failureto resolve may well causelessthan compl ete assessment outcomes, of course.

Asdiscussed in § 5.3 — Missing Sub-components on page 117, QNamesin XML representations may fail
to resolve, rendering components incomplete and unusable because of missing subcomponents. During
schema construction, implementations must retain QName values for such references, in case an appropri-
ately-named component becomes available to discharge the reference by the time it is actually needed.
Absent target namespace names of such as-yet unresolved reference QNames in d components must also
be converted if is satisfied.

|:| The above is carefully worded so that multiple ing of the same schema document will not constitute a violation of
of Schema Properties Correct 1. 2., but applications are allowed, indeed encouraged, to avoid ing the same schema
document more than once to forestall the necessity of establishing identity component by component.

4.2.2. Including modified component definitions

In order to provide some support for evolution and versioning, it is possible to incorporate components
corresponding to a schema document with modifications. The modifications have a pervasive impact, that
is, only the redefined components are used, even when referenced from other incorporated components,
whether redefined themselves or not.

A information item may contain any number of elements. Their schenalLocat i on attributes, consisting
of aURI reference, identify other schema documents, that isinformation items.

XML Schema Part 1: Structures

Layer 2: Schema Documents, Namespaces and Composition Page 107 of 124

The XML Schema corresponding to contains not only the components corresponding to its definition and
declaration children, but also all the components of all the XML Schemas corresponding to any d schema
documents. Such schemadocuments must either (a) havethe samet ar get Nanespace astheing schema
document, or (b) not ar get Namespace at all, in which case the d schema document is converted to
the ing schema document'st ar get Nanmespace.

Thedefinitionswithin the element itself are restricted to be redefinitions of componentsfrom thed schema
document, in terms of themselves. That is,

» Typedefinitions must use themselves as their base type definition;

» Attribute group definitions and model group definitions must be supersets or subsets of their original
definitions, either by including exactly one reference to themselves or by containing only (possibly
restricted) components which appear in a corresponding way in their d selves.

Not all the components of the d schema document need be redefined.

This mechanism is intended to provide a declarative and modular approach to schema modification, with
functionality no different except in scope from what would be achieved by wholesale text copying and
redefinition by editing. In particular redefining atype is not guaranteed to be side-effect free: it may have
unexpected impacts on other type definitions which are based on the redefined one, even to the extent that
some such definitions becomeill-formed.

|:| The pervasive impact of redefinition reinforces the need for implementations to adopt some form of lazy or ‘just-
in-time' approach to component construction, which is also called for in order to avoid inappropriate dependencies
on the order in which definitions and references appear in (collections of) schema documents.

[:] v1. xsd:

<xs: conpl exType nane="per sonNange" >
<Xs:sequence>
<xs: el ement name="title" m nCccurs="0"/>
<xs:el ement nane="forename" m nCccurs="0" maxCccurs="unbounded"/ >
</ xs: sequence>
</ xs: conpl exType>

<xs:el ement nane="addressee" type="personNane"/>

v2. xsd:
<xs: redefine schemaLocati on="v1. xsd">
<xs: conpl exType nane="per sonNange" >
<xs: conpl exCont ent >
<xs: ext ensi on base="per sonNang" >
<Xs:sequence>
<xs: el ement name="generation" m nCccurs="0"/>
</ xs: sequence>
</ xs: ext ensi on>
</ xs: conmpl exCont ent >
</ xs: conpl exType>
</ xs:redefine>

<xs: el ement nanme="aut hor" type="personNane"/>

XML Schema Part 1: Structures

Page 108 of 124 Schemas and Namespaces; Access and Composition

The schemacorrespondingtov2. xsd haseverything specifiedby v1. xsd, withtheper sonNane type redefined,
aswell as everything it specifiesitself. According to this schema, elements constrained by the per sonNane type
may end with agener at i on element. This includes not only the aut hor element, but also the addr essee
element.

src: Redefinition Constraints and Semantics
In addition to the conditions imposed on element information items by the schema for schemas

1. If there are any element information items among the children other than then the actual value of the
schemalLocat i on attribute must successfully resolve.

2. If the actual value of theschenalLocat i on attribute successfully resolves

A. it resolvesto (afragment of) aresource which isan XML document (see), which in turn corre-
sponds to aelement information item in awell-formed information set, which in turn corresponds
to avalid schema.

B. Itresolvestoaeement informationiteminawell-formed information set, which in turn corresponds
to avalid schema

In either case call thed item SlI, the valid schema | and the ing item's parent item SII".

3. A. Sllhasat ar get Nanespace attribute, and its actual value isidentical to the actual value of the
t ar get Nanespace attribute of SII’ (which must have such an attribute).

Neither SII nor SII’ have at ar get Nanespace attribute.
Sl hasnot ar get Nanespace attribute (but S’ does).
or aboveis satisfied

> 0w

the schema corresponding to SII” must include not only definitions or declarations corresponding
to the appropriate members of its own children, but also components identical to all the schema
components of I, with the exception of those explicitly redefined (see Individua Component
Redefinition Corresponding to each non- member of the children of athere are one or two schema
components in the ing schema: 1. 2. In all cases there must be atop-level definition item of the
appropriate name and kind in the d schema document. below).

B. aboveissatisfied

the schema corresponding to SII” must include not only definitions or declarations corresponding
to the appropriate members of its own children, but also components identical to all the schema
components of I, with the exception of those explicitly redefined (see Individua Component
Redefinition Corresponding to each non- member of the children of athere are one or two schema
components in the ing schema: 1. 2. In all cases there must be atop-level definition item of the
appropriate name and kind in the d schema document. below), except that anywhere the absent
target namespace name would have appeared, the actual value of thet ar get Nanespace attribute
of SII" isused (seein Inclusion Constraints and Semantics In addition to the conditions imposed
on element information items by the schema for schemas, 1. 2. 3. It is not an error for the actual
value of the schemal ocation attribute to fail to resolve it al, in which case no corresponding
inclusion is performed. It is an error for it to resolve but the rest of clause 1 above to fail to be
satisfied. Failure to resolve may well cause less than complete assessment outcomes, of course.
As discussed in , QNames in XML representations may fail to resolve, rendering components
incomplete and unusable because of missing subcomponents. During schema construction,

XML Schema Part 1: Structures

Layer 2: Schema Documents, Namespaces and Composition Page 109 of 124

implementations must retain QName values for such references, in case an appropriatel y-named
component becomes available to discharge the reference by the time it is actually needed. Absent
target namespace names of such as-yet unresolved reference QNames in d components must also
be converted if is satisfied. for details).

5. Within the children, each must have a among its children and each must have arestri cti on or
ext ensi on among its grand-children the actual value of whose base attribute must be the same as
the actual value of its own nane attribute plus target namespace;

6. Within the children, for each

A.

it has a among its contents at some level the actual value of whoser ef attribute is the same as
the actual value of its own nane attribute plus target namespace

i. It must have exactly one such group.

ii. The actual value of both that group's mi nOccur s and maxQccur s attribute must be 1 (or
absent).

it has no such self-reference

i. Theactua value of its own name attribute plus target namespace must successfully resolve
to amodel group definitionin .

ii. Theof the model group definition which correspondsto it per § 3.7.2 — XML Representation
of Model Group Definition Schema Components on page 59 must be a valid restriction of
the of that model group definitionin |, as defined in Particle Valid (Restriction) For a particle
(call it R, for restriction) to be a valid restriction of another particle (call it B, for base) 1. 2.

7. Within the children, for each

A.

it has an among its contents the actual value of whoser ef attributeisthe same asthe actual value
of itsown nane attribute plus target namespace

it must have exactly one such group.
it has no such self-reference

i. Theactua value of its own name attribute plus target namespace must successfully resolve
to an attribute group definitionin |.

ii. Theand of the attribute group definition which correspondsto it per § 3.6.2 — XML Represen-
tation of Attribute Group Definition Schema Components on page 57 must be valid restrictions
of the and of that attribute group definition in I, as defined in , and of Derivation Valid
(Restriction, Complex) If theisrestriction 1. 2. 3. 4. 5. If this constraint holds of a complex
type definition, it isavalid restriction of its. (where referencesto the base type definition are
understood as references to the attribute group definitionin).

An attribute group restrictively redefined per corresponds to an attribute group whose consist al and only
of those attribute uses corresponding to s explicitly present among the children of theing . No inheritance
from the d attribute group occurs. Itsis similarly based purely on an explicit , if present.

XML Schema Part 1: Structures

Page 110 of 124 Schemas and Namespaces; Access and Composition

src: Individual Component Redefinition

Corresponding to each non- member of the children of athere are one or two schema componentsin the
ing schema:

1. Theand children information items each correspond to two components:

A. One component which corresponds to the top-level definition item with the same nane inthed
schema document, as defined in § 3 — Schema Component Details on page 13, except that its
name is absent;

B. One component which corresponds to the information item itself, as defined in § 3 — Schema
Component Details on page 13, except that its base type definition is the component defined in
1.1 above.

This pairing ensures the coherence constraints on type definitions are respected, while at the same
time achieving the desired effect, namely that references to names of redefined components in both
the ing and d schema documents resolve to the redefined component as specified in 1.2 above.

2. The and children each correspond to a single component, as defined in § 3 — Schema Component
Details on page 13, except that if and when a self-reference based on ar ef attribute whose actual
valueisthe sameastheitem'snamne plustarget namespace isresolved, acomponent which corresponds
to the top-level definition item of that name and the appropriate kind in | is used.

In all cases there must be a top-level definition item of the appropriate name and kind in the d schema
document.

|:| The above is carefully worded so that multiple equivalent ing of the same schema document will not constitute a
violation of of Schema Properties Correct 1. 2. , but applications are alowed, indeed encouraged, to avoid ing the
same schema document in the same way more than onceto forestall the necessity of establishing identity component
by component (although thiswill have to be done for the individual redefinitions themselves).

4.2.3. References to schema components acr oss namespaces

Asdescribed in § 2.2 — XML SchemaAbstract Data Model on page 4, every top-level schema component
is associated with atarget namespace (or, explicitly, with none). This section sets out the exact mechanism
and syntax in the XML form of schema definition by which a reference to aforeign component is made,
that is, acomponent with a different target namespace from that of the referring component.

Two things are required: not only a means of addressing such foreign components but also a signal to
schema-aware processors that a schema document contains such references:

The element information item identifies namespaces used in external references, i.e. those whose QName
identifies them as coming from a different namespace (or none) than the enclosing schema document's
t ar get Nanmespace. The actual value of itsnanmespace attribute indicates that the containing schema
document may contain qualified references to schema components in that hamespace (via one or more
prefixes declared with namespace declarations in the normal way). If that attribute is absent, then the
import allows unqualified reference to components with no target namespace. Note that componentsto be
imported need not be in the form of a schema document; the processor is free to access or construct com-
ponents using means of its own choosing.

Theactual value of theschenalLocat i on, if present, givesahint asto where aserialization of aschema
document with declarations and definitions for that namespace (or none) may be found. When no
schenalLocat i on attributeis present, the schema author isleaving the identification of that schemato

XML Schema Part 1: Structures

Layer 2: Schema Documents, Namespaces and Composition Page 111 of 124

theinstance, application or user, viathe mechanisms described below in § 4.3 — Layer 3: Schema Document
Access and Web-interoperability on page 112. When aschenmalLocat i on is present, it must contain a
single URI reference which the schemaauthor warrantswill resolveto a serialization of aschemadocument
containing the component(s) in the ed namespace referred to e sewherein the containing schema document.

|:| Since both the namespace and schemalocat i on attribute are optional, abare <i npor t / > information item
is alowed. This simply allows unqualified reference to foreign components with no target namespace without
giving any hints asto where to find them.

|:| The same namespace may be used both for real work, and in the course of defining schema components in terms
of foreign components:

<schema xm ns="http://ww. w3. or g/ 2001/ XM_Schema"
xm ns: html ="htt p: // ww. w3. or g/ 1999/ xht m "
t ar get Nanespace="uri : nywor k" xml ns: my="uri : mywor k" >

<i mport nanespace="http://ww. wW3. or g/ 1999/ xhtm "/ >

<annot ati on>
<docunent ati on>
<htm : p>[Some docunentation for ny schema] </ htm : p>
</ docunent ati on>
</ annot ati on>

<conpl exType nanme="nyType" >

<sequence>

<el ement ref="htm :p" m nCccurs="0"/>
</ sequence>

</ conpl exType>

<el enent name="nyElt" type="ny: nyType"/>
</ schema>

Thetreatment of references as QNamesimpliesthat since (with the exception of the schemafor schemas) the target
namespace and the XML Schema namespace differ, without massive redeclaration of the default namespace either
internal references to the names being defined in a schema document or the schema declaration and definition
elements themselves must be explicitly qualified. This example takesthe first option -- most other examplesin this
specification have taken the second.

src: Import Constraints and Semantics
In addition to the conditions imposed on element information items by the schema for schemas

1. A. thenanespace attributeis present
itsactual value must not match the actual value of theenclosing 'st ar get Nanespace attribute.
B. thenanmespace attributeis not present

the enclosing must have at ar get Nanmespace attribute

XML Schema Part 1: Structures

Page 112 of 124 Schemas and Namespaces; Access and Composition

2. If the application schema reference strategy using the actual values of the schermalLocat i on and
nanmespace attributes, providesareferent, as defined by SchemaDocument L ocation Strategy Given
a namespace name (or none) and (optionally) a URI reference from xsi:schemalocation or xsi:noN-
amespaceSchemal_ocation, schema-aware processors may implement any combination of thefollowing
strategies, in any order: 1. 2. 3. 4. 5. Whenever possible configuration and/or invocation options for
selecting and/or ordering the implemented strategies should be provided. ,

A. Thereferent is (afragment of) aresource which isan XML document (see), which in turn corre-
sponds to a element information item in awell-formed information set, which in turn corresponds
to avalid schema.

B. Thereferent isaeement information item in awell-formed information set, which in turn corre-
sponds to avalid schema.

In either case call the item Sl and the valid schemall.
3. A. thereisananespace attribute
its actual value must be identical to the actual value of thet ar get Nanmespace attribute of SlI.
B. thereisnonanespace attribute
Sl must have not ar get Nanespace attribute
It isnot an error for the application schema reference strategy to fail. It isan error for it to resolve but the

rest of aboveto fail to be satisfied. Failureto find areferent may well cause less than compl ete assessment
outcomes, of course.

The schema components (that is, , , , ,) of a schema corresponding to a element information item with
one or more element information items must include not only definitions or declarations corresponding to
the appropriate members of its children, but also, for each of those element information items for which
above is satisfied, a set of schema componentsidentical to all the schema components of I.

|:| The above is carefully worded so that multiple ing of the same schema document will not constitute a violation of
of Schema Properties Correct 1. 2., but applications are allowed, indeed encouraged, to avoid ing the same schema
document more than once to forestall the necessity of establishing identity component by component. Given that
the schemalLocat i on attribute is only a hint, it is open to applications to ignore all but the first for a given
namespace, regardless of the actual valueof schenmaLocat i on, but such astrategy risks missing useful information
when new schemaLocat i onsare offered.

4.3. Layer 3: Schema Document Access and Web-interoper ability

Layers 1 and 2 provide aframework for assessment and XML definition of schemasin abroad variety of
environments. Over time, arange of standards and conventions may well evolveto support interoperability
of XML Schemaimplementations on the World Wide Web. Layer 3 defines the minimum level of function
required of all conformant processors operating on the Web: it isintended that, over time, future standards
(e.g. XML Packages) for interoperability on the Web and in other environments can be introduced without
the need to republish this specification.

XML Schema Part 1: Structures

Layer 3: Schema Document Access and Web-interoper ability Page 113 of 124

4.3.1. Standardsfor representation of schemas and retrieval of schema documentson the
Web

For interoperability, serialized schema documents, like all other Web resources, may be identified by URI
and retrieved using the standard mechanisms of the Web (e.g. http, https, etc.) Such documents on the
Web must be part of XML documents (see), and are represented in the standard XML schema definition
form described by layer 2 (that is as element information items).

|:| therewill often be timeswhen a schemadocument will be acomplete XML 1.0 document whose document el ement
is . There will be other occasions in which items will be contained in other documents, perhaps referenced using
fragment and/or X Pointer notation.

|:| The variations among server software and web site administration policies make it difficult to recommend any
particular approach to retrieval requests intended to retrieve serialized schema documents. An Accept header of
application/xm, text/xm; q=0.9, */* isperhapsareasonable starting point.

4.3.2. How schema definitions are located on the Web

Asdescribedin §4.1 —Layer 1: Summary of the Schema-validity Assessment Core on page 104, processors
areresponsiblefor providing the schemacomponents (definitions and decl arations) needed for assessment.
Thissectionintroduces aset of normative conventionsto facilitate interoperability for instance and schema
documents retrieved and processed from the Web.

Asdiscussed abovein § 4.2 — Layer 2: Schema Documents, Namespaces and Composition on page 105, other non-
Web mechanisms for delivering schemas for assessment may exist, but are outside the scope of this specification.

Processors on the Web are free to undertake assessment against arbitrary schemas in any of the ways set
out in § 5.2 — Assessing Schema-Validity on page 116. However, it is useful to have acommon convention
for determining the schemato use. Accordingly, general-purpose schema-aware processors (i.e. those not
specialized to one or afixed set of pre-determined schemas) undertaking assessment of a document on the
web must behave as follows:

» unless directed otherwise by the user, assessment is undertaken on the document element information
item of the specified document;

» unless directed otherwise by the user, the processor is required to construct a schema corresponding
to a schema document whoset ar get Namespace isidentical to the namespace name, if any, of the
element information item on which assessment is undertaken.

The composition of the complete schema for use in assessment is discussed in § 4.2 — Layer 2: Schema
Documents, Namespaces and Composition on page 105 above. The means used to | ocate appropriate schema
document(s) are processor and application dependent, subject to the following requirements:

1. Schemas are represented on the Web in the form specified above in § 4.3.1 — Standards for represen-
tation of schemas and retrieval of schema documents on the Web on page 113;

2. Theauthor of adocument uses namespace declarationsto indicate theintended interpretation of names
appearing therein; there may or may not be a schemaretrievabl e viathe namespace name. Accordingly
whether aprocessor's default behavior isor isnot to attempt such dereferencing, it must always provide
for user-directed overriding of that default.

XML Schema Part 1: Structures

Page 114 of 124 Schemas and Namespaces; Access and Composition

|:| Experience suggests that it is not in all cases safe or desirable from a performance point of view to
dereference namespace names as amatter of course. User community and/or consumer/provider agreements
may establish circumstances in which such dereference is a sensible default strategy: this specification
allows but does not require particular communities to establish and implement such conventions. Users
are alwaysfreeto supply namespace names as schemalocation information when dereferencing is desired:
see below.

3. On the other hand, in case a document author (human or not) created a document with a particular
schema in view, and warrants that some or al of the document conforms to that schema, the
schemalLocat i on andnoNamespaceSchenalocat i on attributes (inthe XML Schemainstance
namespace, that is, http://wwv W3. org/ 2001/ XM_.Schema- i nst ance) (hereafter
xsi : schermalLocati on and xsi : noNanespaceSchenmalLocat i on) are provided. The first
records the author's warrant with pairs of URI references (one for the namespace name, and one for a
hint as to the location of a schema document defining names for that namespace name). The second
similarly providesaURI reference asahint asto thelocation of aschemadocument withnot ar get -
Narespace attribute.

Unless directed otherwise, for example by the invoking application or by command line option, pro-
cessors should attempt to dereference each schema document location URI in the actual value of such
Xsi : schenmalLocat i onandxsi : noNanmespaceSchenalLocat i on attributes, see detailsbelow.

4. xsi:schemalLocati onandxsi: noNanespaceSchemalLocat i on attributescan occur on any
element. However, it isan error if such an attribute occurs after the first appearance of an element or
attribute information item within an element information item initially validated whose namespace
name it addresses. According to the rules of § 4.1 — Layer 1: Summary of the Schema-validity
Assessment Core on page 104, the corresponding schema may be lazily assembled, but is otherwise
stable throughout assessment. Although schemalocation attributes can occur on any element, and can
be processed incrementally asdiscovered, their effect isessentially global to the assessment. Definitions
and declarations remain in effect beyond the scope of the element on which the binding is declared.

|:| Multiple schema bindings can be declared using a single attribute. For example consider a stylesheet:

<styl esheet xm ns="http://ww. w3. or g/ 1999/ XSL/ Tr ansf or ni'
xm ns: htm ="http://ww. w3. org/ 1999/ xht m "
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schema- i nst ance"
xsi :schemaLocati on="http://ww. w3. or g/ 1999/ XSL/ Tr ansf or m
http://ww. w3. org/ 1999/ XSL/ Tr ansf or m xsd
http://ww. w3. or g/ 1999/ xht m
http://ww. w3. org/ 1999/ xht m . xsd" >

The namespace names used in schenmalLocat i on can, but need not be identical to those actually qualifying the
element within whose start tag it is found or its other attributes. For example, as above, all schemalocation infor-
mation can be declared on the document element of a document, if desired, regardless of where the namespaces
are actually used.

src: Schema Document Location Strategy

Given a namespace name (or none) and (optionally) a URI reference from xsi : schenmalLocat i on or
xsi : noNanmespaceSchemalLocat i on, schema-aware processors may implement any combination
of the following strategies, in any order:

XML Schema Part 1: Structures

Errorsin Schema Construction and Structure Page 115 of 124

1. Do nothing, for instance because a schema containing components for the given namespace nameis
already known to be available, or because it is known in advance that no efforts to locate schema
documents will be successful (for example in embedded systems);

2. Based on the location URI, identify an existing schema document, either as a resource which is an
XML document or a element information item, in some local schema repository;

3. Based on the namespace name, identify an existing schema document, either as a resource which is
an XML document or a element information item, in some local schema repository;

4. Attempt to resolvethe location URI, to |ocate aresource on the web which isor contains or references
aelement;

5. Attempt to resolve the namespace hame to locate such a resource.

Whenever possible configuration and/or invocation options for sel ecting and/or ordering the implemented
strategies should be provided.

Improved or alternative conventions for Web interoperability can be standardized in the future without
reopening this specification. For example, the W3C is currently considering initiatives to standardize the
packaging of resources relating to particular documents and/or namespaces: this would be an addition to
the mechanisms described here for layer 3. This architecture also facilitates innovation at layer 2: for
example, it would be possiblein the future to define an additional standard for the representation of schema
components which allowed e.g. type definitions to be specified piece by piece, rather than al at once.

5. Schemas and Schema-validity Assessment

The architecture of schema-aware processing allowsfor arich characterization of XML documents. schema
validity is not a binary predicate.

This specification distinguishes between errorsin schema construction and structure, on the one hand, and
schema validation outcomes, on the other.

5.1. Errorsin Schema Construction and Structure

Before assessment can be attempted, aschemaisrequired. Special-purpose applications are freeto determine
aschemafor usein assessment by whatever means are appropriate, but general purpose processors should
implement the strategy set out in Schema Document L ocation Strategy Given anamespace name (or none)
and (optionally) aURI reference from xsi:schemal ocation or xsi:noNamespaceSchemal ocation, schema-
aware processors may implement any combination of the following strategies, in any order: 1. 2. 3. 4. 5.
Whenever possible configuration and/or invocation options for sel ecting and/or ordering the implemented
strategies should be provided. , starting with the namespaces declared in the document whose assessment
is being undertaken, and the actual values of the xsi : schemalLocati on and xsi : noNanes-
paceSchenmalLocat i on attributes thereof, if any, along with any other information about schema
identity or schema document location provided by users in application-specific ways, if any.

Itisan error if aschemaand all the components which are the value of any of its properties, recursively,
fail to satisfy all the relevant Constraints on Schemas set out in the last section of each of the subsections
of § 3 - Schema Component Details on page 13.

XML Schema Part 1: Structures

Page 116 of 124 Schemas and Schema-validity Assessment

If a schemais derived from one or more schema documents (that is, one or more element information
items) based on the correspondence rules set out in § 3 — Schema Component Details on page 13 and § 4 —
Schemas and Namespaces: Access and Composition on page 103, two additional conditions hold:

» Itisanerrorif any such schemadocument would not be fully valid with respect to aschema correspond-
ing to the Appendix A — Schemafor Schemas (normative) on page 118, that is, following schema-vali-
dation with such a schema, the element information items would have a property with value full or
partial and a property with value valid.

e Itisanerrorif any such schemadocument is or contains any element information items which violate
any of the relevant Schema Representation Constraints set out in Appendix C.3 — Schema Representation
Constraints on page 119.

The three cases described above are the only types of error which this specification defines. With respect
to the processes of the checking of schema structure and the construction of schemas corresponding to
schema documents, this specification imposes no restrictions on processors after an error is detected.
However assessment with respect to schema-like entities which do not satisfy all the above conditionsis
incoherent. Accordingly, conformant processors must not attempt to undertake assessment using such non-
schemas.

5.2. Assessing Schema-Validity

With a schema which satisfies the conditions expressed in § 5.1 — Errors in Schema Construction and
Structure on page 115 above, the schema-validity of an element information item can be assessed. Three
primary approaches to this are possible:

1. Theuser or application identifies acomplex type definition from among the of the schema, and appeals
to Schema-Validity Assessment (Element) The schema-validity assessment of an element information
item depends on itsvalidation and the assessment of its element information item children and associated
attributeinformation items, if any. So for an element information item's schema-validity to be assessed
1. 2. If either case of above holds, the element information item has been strictly assessed. If theitem
cannot be strictly assessed, because neither nor above are satisfied, an element information item's
schema validity may be laxly assessed if its context-determined declaration is not skip by validating
with respect to the ur-type definition as per . In genera if above holds does not, and vice versa. When
an xsi:type attribute is involved, however, takes precedence, asismade clear in . ();

2. Theuser or application identifies a element declaration from among the of the schema, checksthat its
and match thelocal name and namespace name of theitem, and appealsto Schema-Validity Assessment
(Element) The schema-validity assessment of an element information item depends on its validation
and the assessment of itselement information item children and associated attribute information items,
if any. So for an element information item's schema-validity to be assessed 1. 2. If either case of above
holds, the element information item has been strictly assessed. If the item cannot be strictly assessed,
because neither nor above are satisfied, an element information item's schema validity may be laxly
assessed if its context-determined declaration is not skip by validating with respect to the ur-type
definition as per . In general if above holds does not, and vice versa. When an xsi:type attribute is
involved, however, takes precedence, asis made clear in . ();

3. Theprocessor starts from Schema-Validity Assessment (Element) The schema-validity assessment of
an element information item depends on its validation and the assessment of its element information
item children and associated attribute information items, if any. So for an element information item's
schema-validity to be assessed 1. 2. If either case of above holds, the element information item has
been strictly assessed. If the item cannot be strictly assessed, because neither nor above are satisfied,

XML Schema Part 1: Structures

Missing Sub-components Page 117 of 124

an element information item's schema validity may be laxly assessed if its context-determined decla-
ration is not skip by validating with respect to the ur-type definition as per . In general if above holds
doesnot, and vice versa. When an xsi:type attribute isinvolved, however, takes precedence, asis made
clear in . with no stipulated declaration or definition, and either strict or lax assessment ensues,
depending on whether or not the element information and the schema determine either an element
declaration (by name) or atype definition (viaxsi : t ype) or not.

The outcome of thiseffort, in any case, will be manifest in the validation attempted and validity properties
on the element information item and its attributes and children, recursively, as defined by Assessment
Outcome (Element) If the schema-validity of an element information item has been assessed as per , then
in the post-schema-validation infoset it has properties asfollows: The nearest ancestor element information
item with a property (or this element item itself if it has such a property). 1. 2. 1. 2. 3. and Assessment
Outcome (Attribute) If the schema-validity of an attribute information item has been assessed as per , then
in the post-schema-validation infoset it has properties asfollows: The nearest ancestor element information
item with aproperty. 1. 2. 1. 2. infoset. See for the other possible value. . It is up to applications to decide
what constitutes a successful outcome.

Note that every element and attribute information item participating in the assessment will also have a
validation context property which refers back to the element information item at which assessment began.
Thisitem, that is the element information item at which assessment began, is called the validation root.

This specification does not reconstruct the XML 1.0 notion of root in either schemas or instances. Equivalent
functionality is provided for at assessment invocation, via above.

|:| This specification has nothing normative to say about multiple assessment episodes. It should however be clear
from the above that if a processor restarts assessment with respect to a post-schema-validation infoset some post-
schema-validation infoset contributions from the previous assessment may be overwritten. Restarting nonetheless
may be useful, particularly at a node whose validation attempted property is none, in which case there are three
obvious cases in which additional useful information may resullt:

» assessment was not attempted because of a validation failure, but declarations and/or definitions are available
for at least some of the children or attributes;

e assessment was not attempted because a named definition or declaration was missing, but after further effort
the processor has retrieved it.

» assessment was not attempted because it was skipped, but the processor has at least some declarations and/or
definitions available for at least some of the children or attributes.

5.3. Missing Sub-components

At the beginning of § 3 — Schema Component Details on page 13, attention is drawn to the fact that most
kinds of schema components have properties which are described therein as having other components, or
sets of other components, as values, but that when components are constructed on the basis of their corre-
spondence with element information items in schema documents, such properties usually correspond to
QNames, and the of such QNames may fail, resulting in one or more values of or containing absent where
a component is mandated.

If at any time during assessment, an element or attribute information item is being validated with respect
to a component of any kind any of whose properties has or contains such an absent value, the validation
is modified, as following:

XML Schema Part 1: Structures

Page 118 of 124 Schema for Schemas (normative)

* Inthe case of attribute information items, the effect is as if of Attribute Locally Valid For an attribute
information item to be locally valid with respect to an attribute declaration 1. 2. 3. 4. had failed;

* Inthe case of element information items, the effect isasif of Element Locally Valid (Element) For an
element information item to be locally valid with respect to an element declaration 1. 2. 3. 4. 5. 6. 7.
had failed;

* In the case of element information items, processors may choose to continue assessment: see lax
assessment.

Because of the value specification for in Assessment Outcome (Element) If the schema-validity of an
element information item has been assessed as per , then in the post-schema-validation infoset it has
properties asfollows. The nearest ancestor element information item with a property (or this element item
itself if it has such aproperty). 1. 2. 1. 2. 3., if this Situation ever arises, the document as a whole cannot
show aof full.

5.4. Responsibilities of Schema-aware Processor s

Schema-aware processors are responsiblefor processing XML documents, schemas and schemadocuments,
asappropriategiventhelevel of conformance (asdefinedin § 2.4 — Conformance on page 10) they support,
consistently with the conditions set out above.

Appendix A. Schema for Schemas (nor mative)

The XML representation of the schemafor schema documentsis presented here as a normative part of the
specification, and as an illustrative example of how the XML Schema language can define itself using its
own constructs. The names of XML Schema language types, elements, attributes and groups defined here
are evocative of their purpose, but are occasionally verbose.

There is some annotation in comments, but afuller annotation will require the use of embedded documen-
tation facilities or a hyperlinked external annotation for which tools are not yet readily available.

Since a schema document is an XML document, it has optional XML and doctype declarations that are
provided here for completeness. Theroot schema element defines a new schema. Since thisis a schema
for XML Schema: Structures, thet ar get Nanespace references the XML Schema namespace itself.

|:| And that isthe end of the schema for schema documents.

Appendix B. References (nor mative)

XML Schemas. Datatypes
XML Schema Part 2: Datatypes, Paul V. Biron and Ashok Malhotra, eds., W3C, 2 May 2001. See
http://www.w3.0rg/TR/2004/REC-xmlschema-2-20041028/dataty pes.html

XML Schema Requirements

XML Schema Requirements, Ashok Malhotraand Murray Ma oney, eds., W3C, 15 February 1999.
See http://www.w3.0rg/TR/1999/NOT E-xml -schema-req-19990215

XML Schema Part 1: Structures

http://www.w3.org/TR/2004/REC-xmlschema-2-20041028/datatypes.html
http://www.w3.org/TR/1999/NOTE-xml-schema-req-19990215

Validation Rules Page 119 of 124

XML 1.0 (Second Edition)

Extensible Markup Language (XML) 1.0, Second Edition, Tim Bray et a., eds., W3C, 6 October
2000. See http://www.w3.0rg/TR/2000/REC-xmlI-20001006

XML-Infoset

XML Information Set, John Cowan and Richard Tobin, eds., W3C, 16 March 2001. See
http://www.w3.org/ TR/2001/WD-xml-inf oset-20010316/

XML-Namespaces

Namespacesin XML, Tim Bray et a., eds., W3C, 14 January 1999. See
http://www.w3.0rg/ TR/1999/REC-xml-names-19990114/

XPointer

XML Pointer Language (XPointer), Eve Maler and Steve DeRose, eds., W3C, 8 January 2001.
See http://www.w3.0rg/TR/2001/WD-xptr-20010108/

XPath

XML Path Language, James Clark and Steve DeRosg, eds., W3C, 16 November 1999. See
http://www.w3.0rg/TR/1999/REC-xpath-19991116

Appendix C. Outcome Tabulations (normative)

Tofacilitate consistent reporting of schemaerrors and validation failures, this section tabulates and provides
unique names for al the constraints listed in this document. Wherever such constraints have numbered
parts, reports should use the name given below plus the part number, separated by a period ('."). Thus for
example cos-ct - ext ends. 1. 2 should be used to report a violation of the of Derivation Valid
(Extension) If the is extension, 1. 2. If this constraint holds of a complex type definition, it is a valid
extension of its. .

C.1. Validation Rules
C.2. Contributionsto the post-schema-validation infoset
C.3. Schema Representation Constraints

C.4. Schema Component Constraints

Appendix D. Required I nformation Set Itemsand Properties
(nor mative)

This specification requires as a precondition for assessment an information set as defined in [XM L-Infoset]
which supports at least the following information items and properties:

XML Schema Part 1: Structures

http://www.w3.org/TR/2000/REC-xml-20001006
http://www.w3.org/TR/2001/WD-xml-infoset-20010316/
http://www.w3.org/TR/1999/REC-xml-names-19990114/
http://www.w3.org/TR/2001/WD-xptr-20010108/
http://www.w3.org/TR/1999/REC-xpath-19991116

Page 120 of 124 Schema Components Diagram (non-nor mative)

Attribute I nformation Item
local name, namespace name, normalized value
Character Information Item
character code
Element I nformation Item
local name, namespace name, children, attributes, in-scope namespaces or namespace attributes
Namespace | nformation Item
prefix, namespace name

In addition, infosets should support the unparsedEntities property of the Document Information Item.
Failure to do so will mean al items of type ENTITY or ENTITIES will fail to validate.

This specification does not require any destructive alterationsto the input information set: all theinformation
set contributions specified herein are additive.

Thisappendix isintended to satisfy the requirementsfor Conformanceto the [XM L-Infoset] specification.

Appendix E. Schema Components Diagram (non-nor mative)

]

Appendix F. Glossary (non-nor mative)

Thelisting below isfor the benefit of readers of a printed version of this document: it collects together all
the definitions which appear in the document above.

Editor Note:
|:| An XSL macro is used to collect definitions from throughout the spec and gather them here for easy reference.

Appendix G. DTD for Schemas (non-nor mative)

The DTD for schema documents is given below. Note there is no implication here that scherma must be
the root element of a document.

Although this DTD is non-normative, any XML document which is not valid per thisDTD, given redefi-
nitionsinitsinternal subset of the'p' and 's parameter entities bel ow appropriate to its namespace declaration
of the XML Schema namespace, is almost certainly not a valid schema document, with the exception of
documents with multiple namespace prefixes for the XML Schema namespace itself. Accordingly
authoring XML Schema documents using this DTD and DTD-based authoring tools, and specifying it as
the DOCTY PE of documentsintended to be XML Schemadocuments and validating them with avalidating
XML parser, are sensible development strategies which users are encouraged to adopt until XML Schema-
based authoring tools and validators are more widely available.

XML Schema Part 1: Structures

http://www.w3.org/TR/2001/WD-xml-infoset-20010316/#conformance

Page 121 of 124

Appendix H. Analysis of the Unique Particle Attribution
Constraint (non-normative)

A specification of the import of Unique Particle Attribution A content model must be formed such that
during validation of an element information item sequence, the particle component contained directly,
indirectly or implicitly therein with which to attempt to validate each item in the sequence in turn can be
uniquely determined without examining the content or attributes of that item, and without any information
about the items in the remainder of the sequence. This constraint reconstructs for XML Schema the
equivalent constraints of and SGML. Given the presence of element substitution groups and wildcards,
the concise expression of this constraint is difficult, see for further discussion. Since this constraint is
expressed at the component level, it applies to content models whose origins (e.g. viatype derivation and
references to named model groups) are no longer evident. So particles at different points in the content
model are always distinct from one another, even if they originated from the same named model group.
which does not appeal to a processing model is difficult. What follows is intended as guidance, without
claiming to be complete.

Two non-group particles overlap if
» They are both element declaration particles whose declarations have the same and .
or

* They are both element declaration particles one of whose and are the same as those of an element
declaration in the other's substitution group.

or

» They are both wildcards, and the intensional intersection of their s as defined in Attribute Wildcard
Intersection For awildcard's value to be the intensional intersection of two other such values (call them
Oland O2): 1. 2. 3. 4. 5. 6. Inthe case where there are more than two val ues, the intensional intersection
is determined by identifying the intensional intersection of two of the values as above, then the inten-
sional intersection of that value with the third (providing the first intersection was expressible), and so
on asrequired. is not the empty set.

or

* Oneisawildcard and the other an element declaration, and the of any member of its substitution group
is valid with respect to the of the wildcard.

A content model will violate the unique attribution constraint if it contains two particles which overlap

and which either

» arebothinthe of achoice or all group

or

» may validate adjacent information items and the first has less than .

Two particles may validate adjacent information itemsiif they are separated by at most epsilon transitions

in the most obvious transcription of a content model into a finite-state automaton.

A preciseformulation of this constraint can a so be offered in terms of operations on finite-state automaton:
transcribe the content model into an automaton in the usual way using epsilon transitions for optionality
and unbounded maxOccurs, unfolding other numeric occurrence ranges and treating the heads of substitution
groups asif they were choices over all elementsin the group, but using not element QNames as transition

XML Schema Part 1: Structures

Page 122 of 124 References (non-nor mative)

labels, but rather pairs of element QNames and positionsin the model. Determinize this automaton, treating
wildcard transitions as opaque. Now replace all QName+position transition labelswith the element QNames
alone. If the result has any states with two or more identical-QName-labeled transitions from it, or a
QName-labeled transition and awildcard transition which subsumesit, or two wildcard transitions whose
intentional intersection is non-empty, the model does not satisfy the Unique Attribution constraint.

Appendix |. References (non-normative)

DCD

Document Content Description for XML (DCD), Tim Bray et al., eds., W3C, 10 August 1998. See
http://www.w3.0rg/TR/1998/NOTE-dcd-19980731

DDML

Document Definition Markup Language, Ronald Bourret, John Cowan, Ingo Macherius, Simon
St. Laurent, eds., W3C, 19 January 1999. See http://www.w3.0rg/ TR/1999/NOTE-ddml-19990119

XML Schema: Primer

XML Schema Part O: Primer, David C. Fallside, ed., W3C, 2 May 2001. See
http://www.w3.org/TR/2004/REC-xml schema-0-20041028/primer.html

0X
Schema for Object-oriented XML, Andrew Davidson et al., eds., W3C, 1998. See
http://www.w3.0rg/1999/07/NOTE-SOX-19990730/

0X-2
Schema for Object-oriented XML, Version 2.0, Andrew Davidson, et al., W3C, 30 July 1999. See
http://www.w3.0rg/ TR/NOTE-SOX/

XDR
XML-Data Reduced, Charles Frankston and Henry S. Thompson, 3 July 1998. See
http://www.ltg.ed.ac.uk/~ht/X ML Data-Reduced.htm

XML-Data

XML-Data, Andrew Layman et a., W3C, 05 January 1998. See http://www.w3.org/ TR/1998/NOTE-
XML-data-0105/

Appendix J. Acknowledgements (non-nor mative)

The following contributed material to the first edition of this specification:

- David Fdlside, IBM

- Scott Lawrence, Agranat Systems

- Andrew Layman, Microsoft

- Evel.Maer, Sun Microsystems

- Asir S. Vedamuthu, webMethods, Inc

The editors acknowledge the members of the XML Schema Working Group, the members of other W3C
Working Groups, and industry experts in other forums who have contributed directly or indirectly to the

XML Schema Part 1: Structures

http://www.w3.org/TR/1998/NOTE-dcd-19980731
http://www.w3.org/TR/1999/NOTE-ddml-19990119
http://www.w3.org/TR/2004/REC-xmlschema-0-20041028/primer.html
http://www.w3.org/1999/07/NOTE-SOX-19990730/
http://www.w3.org/TR/NOTE-SOX/
http://www.ltg.ed.ac.uk/~ht/XMLData-Reduced.htm
http://www.w3.org/TR/1998/NOTE-XML-data-0105/
http://www.w3.org/TR/1998/NOTE-XML-data-0105/

Page 123 of 124

process or content of creating this document. The Working Group is particularly grateful to Lotus Devel-
opment Corp. and IBM for providing teleconferencing facilities.

At thetimethefirst edition of this specification was published, the members of the XML SchemaWorking
Group were:

Jim Barnette, Defense Information Systems Agency (DISA); Paul V. Biron, Health Level Seven; Don
Box, DevelopMentor; Allen Brown, Microsoft; Lee Buck, TIBCO Extensibility; Charles E. Campbell,
Informix; Wayne Carr, Intel; Peter Chen, Bootstrap Alliance and LSU; David Cleary, Progress Software;
Dan Connolly, W3C (staff contact); Ugo Corda, Xerox; Roger L. Costello, MITRE; Haavard Danielson,
Progress Software; Josef Dietl, Mozquito Technologies, David Ezell, Hewlett-Packard Company ;
Alexander Falk, Altova GmbH; David Fallside, IBM; Dan Fox, Defense Logistics Information Service
(DLIS); Matthew Fuchs, Commerce One; Andrew Goodchild, Distributed Systems Technology Centre
(DSTC Pty Ltd); Paul Grosso, Arbortext, Inc; Martin Gudgin, DevelopMentor; Dave Hollander, Contivo,
Inc (co-chair); Mary Holstege, Invited Expert; Jane Hunter, Distributed Systems Technology Centre (DSTC
Pty Ltd); Rick Jelliffe, Academia Sinica; Simon Johnston, Rational Software; Bob Lojek, Mozquito
Technologies; Ashok Malhotra, Microsoft; Lisa Martin, IBM; Noah Mendelsohn, Lotus Development
Corporation; Adrian Michel, Commerce One; Alex Milowski, Invited Expert; Don Mullen, TIBCO
Extensibility; Dave Peterson, Graphic Communications Association; Jonathan Robie, Software AG; Eric
Sedlar, Oracle Corp.; C. M. Sperberg-McQueen, W3C (co-chair); Bob Streich, Calico Commerce; William
K. Stumbo, Xerox; Henry S. Thompson, University of Edinburgh; Mark Tucker, Health Level Seven; Asir
S. Vedamuthu, webMethods, Inc; Priscilla Walmsley, XML Solutions; Norm Walsh, Sun Microsystems,
Aki Yoshida, SAP AG; Kongyi Zhou, Oracle Corp.

The XML Schema Working Group has benefited in its work from the participation and contributions of a
number of people not currently members of the Working Group, including in particular those named bel ow.
Affiliations given are those current at the time of their work with the WG.

Paula Angerstein, Vignette Corporation; David Beech, Oracle Corp.; Gabe Beged-Dov, Rogue Wave
Software; Greg Bumgardner, Rogue Wave Software; Dean Burson, L otus Development Corporation; Mike
Cokus, MITRE; Andrew Eisenberg, Progress Software; Rob Ellman, Calico Commerce; George Feinberg,
Object Design; Charles Frankston, Microsoft; Ernesto Guerrieri, Inso; Michael Hyman, Microsoft; Renato
lannella, Distributed Systems Technology Centre (DSTC Pty Ltd); Dianne Kennedy, Graphic Communi-
cations Association; Janet Koenig, Sun Microsystems, Setrag Khoshafian, Technology Deployment
International (TDI); Ara Kullukian, Technology Deployment International (TDI); Andrew Layman,
Microsoft; Dmitry Lenkov, Hewlett-Packard Company; John McCarthy, Lawrence Berkeley Nationa
Laboratory; Murata Makoto, Xerox; Eve Maler, Sun Microsystems; Murray Ma oney, Muzmo Communi-
cation, acting for Commerce One; Chris Olds, Wall Data; Frank Olken, Lawrence Berkeley National
Laboratory; Shriram Revankar, Xerox; Mark Reinhold, Sun Microsystems; John C. Schneider, MITRE;
Lew Shannon, NCR; William Shea, Merrill Lynch; Ralph Swick, W3C; Tony Stewart, Rivcom; Matt
Timmermans, Microstar; Jim Trezzo, Oracle Corp.; Steph Tryphonas, Microstar

The lists given above pertain to the first edition. At the time work on this second edition was compl eted,
the membership of the Working Group was:

Leonid Arbouzov, Sun Microsystems; Jim Barnette, Defense Information Systems Agency (DISA); Paul
V. Biron, Health Level Seven; Allen Brown, Microsoft; Charles E. Campbell, Invited expert; Peter Chen,
Invited expert; Tony Cincotta, NIST; David Ezell, National Association of Convenience Stores; Matthew
Fuchs, Invited expert; Sandy Gao, IBM; Andrew Goodchild, Distributed Systems Technology Centre
(DSTC Pty Ltd); Xan Gregg, Invited expert; Mary Holstege, Mark Logic; Mario Jeckle, DaimlerChrysler;
Marcel Jemio, Data Interchange Standards Association; Kohsuke Kawaguchi, Sun Microsystems; Ashok
Malhotra, Invited expert; Lisa Martin, IBM; Jim Melton, Oracle Corp; Noah Mendelsohn, IBM; Dave
Peterson, Invited expert; Anli Shundi, TIBCO Extensibility; C. M. Sperberg-McQueen, W3C (co-chair);

XML Schema Part 1: Structures

Page 124 of 124 Acknowledgements (non-nor mative)

Hoylen Sue, Distributed Systems Technology Centre (DSTC Pty Ltd); Henry S. Thompson, University
of Edinburgh; Asir S. Vedamuthu, webMethods, Inc; Priscilla Walmsley, Invited expert; Kongyi Zhou,
Oracle Corp.

We note with sadness the accidental death of Mario Jeckle shortly after the completion of work on this
document. In addition to those named above, several people served on the Working Group during the
development of this second edition:

Oriol Carbo, University of Edinburgh; Tyng-Ruey Chuang, Academia Sinica; Joey Coyle, Health Level
7, Tim Ewald, DevelopMentor; Nelson Hung, Corel; Melanie Kudela, Uniform Code Council; Matthew
MacKenzie, XML Global; Cliff Schmidt, Microsoft; John Stanton, Defense Information SystemsAgency;
John Tebbutt, NIST; Ross Thompson, Contivo; Scott Vorthmann, TIBCO Extensibility

XML Schema Part 1: Structures

	Colophon
	Abstract
	Status of this document

	Table of Contents
	1. Introduction
	1.1. Purpose
	1.2. Dependencies on Other Specifications
	1.3. Documentation Conventions and Terminology

	2. Conceptual Framework
	2.1. Overview of XML Schema
	2.2. XML Schema Abstract Data Model
	2.2.1. Type Definition Components
	2.2.1.1. Type Definition Hierarchy
	2.2.1.2. Simple Type Definition
	2.2.1.3. Complex Type Definition

	2.2.2. Declaration Components
	2.2.2.1. Element Declaration
	2.2.2.2. Element Substitution Group
	2.2.2.3. Attribute Declaration
	2.2.2.4. Notation Declaration

	2.2.3. Model Group Components
	2.2.3.1. Model Group
	2.2.3.2. Particle
	2.2.3.3. Attribute Use
	2.2.3.4. Wildcard

	2.2.4. Identity-constraint Definition Components
	2.2.5. Group Definition Components
	2.2.5.1. Model Group Definition
	2.2.5.2. Attribute Group Definition

	2.2.6. Annotation Components

	2.3. Constraints and Validation Rules
	2.4. Conformance
	2.5. Names and Symbol Spaces
	2.6. Schema-Related Markup in Documents Being Validated
	2.6.1. xsi:type
	2.6.2. xsi:nil
	2.6.3. xsi:schemaLocation, xsi:noNamespaceSchemaLocation

	2.7. Representation of Schemas on the World Wide Web

	3. Schema Component Details
	3.1. Introduction
	3.1.1. Components and Properties
	3.1.2. XML Representations of Components
	3.1.3. The Mapping between XML Representations and Components
	3.1.4. White Space Normalization during Validation

	3.2. Attribute Declarations
	3.2.1. The Attribute Declaration Schema Component
	3.2.2. XML Representation of Attribute Declaration Schema Components
	3.2.3. Constraints on XML Representations of Attribute Declarations
	3.2.4. Attribute Declaration Validation Rules
	3.2.5. Attribute Declaration Information Set Contributions
	3.2.6. Constraints on Attribute Declaration Schema Components
	3.2.7. Built-in Attribute Declarations

	3.3. Element Declarations
	3.3.1. The Element Declaration Schema Component
	3.3.2. XML Representation of Element Declaration Schema Components
	3.3.3. Constraints on XML Representations of Element Declarations
	3.3.4. Element Declaration Validation Rules
	3.3.5. Element Declaration Information Set Contributions
	3.3.6. Constraints on Element Declaration Schema Components

	3.4. Complex Type Definitions
	3.4.1. The Complex Type Definition Schema Component
	3.4.2. XML Representation of Complex Type Definitions
	3.4.3. Constraints on XML Representations of Complex Type Definitions
	3.4.4. Complex Type Definition Validation Rules
	3.4.5. Complex Type Definition Information Set Contributions
	3.4.6. Constraints on Complex Type Definition Schema Components
	3.4.7. Built-in Complex Type Definition

	3.5. AttributeUses
	3.5.1. The Attribute Use Schema Component
	3.5.2. XML Representation of Attribute Use Components
	3.5.3. Constraints on XML Representations of Attribute Uses
	3.5.4. Attribute Use Validation Rules
	3.5.5. Attribute Use Information Set Contributions
	3.5.6. Constraints on Attribute Use Schema Components

	3.6. Attribute Group Definitions
	3.6.1. The Attribute Group Definition Schema Component
	3.6.2. XML Representation of Attribute Group Definition Schema Components
	3.6.3. Constraints on XML Representations of Attribute Group Definitions
	3.6.4. Attribute Group Definition Validation Rules
	3.6.5. Attribute Group Definition Information Set Contributions
	3.6.6. Constraints on Attribute Group Definition Schema Components

	3.7. Model Group Definitions
	3.7.1. The Model Group Definition Schema Component
	3.7.2. XML Representation of Model Group Definition Schema Components
	3.7.3. Constraints on XML Representations of Model Group Definitions
	3.7.4. Model Group Definition Validation Rules
	3.7.5. Model Group Definition Information Set Contributions
	3.7.6. Constraints on Model Group Definition Schema Components

	3.8. Model Groups
	3.8.1. The Model Group Schema Component
	3.8.2. XML Representation of Model Group Schema Components
	3.8.3. Constraints on XML Representations of Model Groups
	3.8.4. Model Group Validation Rules
	3.8.5. Model Group Information Set Contributions
	3.8.6. Constraints on Model Group Schema Components

	3.9. Particles
	3.9.1. The Particle Schema Component
	3.9.2. XML Representation of Particle Components
	3.9.3. Constraints on XML Representations of Particles
	3.9.4. Particle Validation Rules
	3.9.5. Particle Information Set Contributions
	3.9.6. Constraints on Particle Schema Components

	3.10. Wildcards
	3.10.1. The Wildcard Schema Component
	3.10.2. XML Representation of Wildcard Schema Components
	3.10.3. Constraints on XML Representations of Wildcards
	3.10.4. Wildcard Validation Rules
	3.10.5. Wildcard Information Set Contributions
	3.10.6. Constraints on Wildcard Schema Components

	3.11. Identity-constraint Definitions
	3.11.1. The Identity-constraint Definition Schema Component
	3.11.2. XML Representation of Identity-constraint Definition Schema Components
	3.11.3. Constraints on XML Representations of Identity-constraint Definitions
	3.11.4. Identity-constraint Definition Validation Rules
	3.11.5. Identity-constraint Definition Information Set Contributions
	3.11.6. Constraints on Identity-constraint Definition Schema Components

	3.12. Notation Declarations
	3.12.1. The Notation Declaration Schema Component
	3.12.2. XML Representation of Notation Declaration Schema Components
	3.12.3. Constraints on XML Representations of Notation Declarations
	3.12.4. Notation Declaration Validation Rules
	3.12.5. Notation Declaration Information Set Contributions
	3.12.6. Constraints on Notation Declaration Schema Components

	3.13. Annotations
	3.13.1. The Annotation Schema Component
	3.13.2. XML Representation of Annotation Schema Components
	3.13.3. Constraints on XML Representations of Annotations
	3.13.4. Annotation Validation Rules
	3.13.5. Annotation Information Set Contributions
	3.13.6. Constraints on Annotation Schema Components

	3.14. Simple Type Definitions
	3.14.1. (non-normative) The Simple Type Definition Schema Component
	3.14.2. (non-normative) XML Representation of Simple Type Definition Schema Components
	3.14.3. Constraints on XML Representations of Simple Type Definitions
	3.14.4. Simple Type Definition Validation Rules
	3.14.5. Simple Type Definition Information Set Contributions
	3.14.6. Constraints on Simple Type Definition Schema Components
	3.14.7. Built-in Simple Type Definition

	3.15. Schemas as a Whole
	3.15.1. The Schema Itself
	3.15.2. XML Representations of Schemas
	3.15.2.1. References to Schema Components
	3.15.2.2. References to Schema Components from Elsewhere

	3.15.3. Constraints on XML Representations of Schemas
	3.15.4. Validation Rules for Schemas as a Whole
	3.15.5. Schema Information Set Contributions
	3.15.6. Constraints on Schemas as a Whole

	4. Schemas and Namespaces: Access and Composition
	4.1. Layer 1: Summary of the Schema-validity Assessment Core
	4.2. Layer 2: Schema Documents, Namespaces and Composition
	4.2.1. Assembling a schema for a single target namespace from multiple schema definition documents
	4.2.2. Including modified component definitions
	4.2.3. References to schema components across namespaces

	4.3. Layer 3: Schema Document Access and Web-interoperability
	4.3.1. Standards for representation of schemas and retrieval of schema documents on the Web
	4.3.2. How schema definitions are located on the Web

	5. Schemas and Schema-validity Assessment
	5.1. Errors in Schema Construction and Structure
	5.2. Assessing Schema-Validity
	5.3. Missing Sub-components
	5.4. Responsibilities of Schema-aware Processors

	A. Schema for Schemas (normative)
	B. References (normative)
	C. Outcome Tabulations (normative)
	C.1. Validation Rules
	C.2. Contributions to the post-schema-validation infoset
	C.3. Schema Representation Constraints
	C.4. Schema Component Constraints

	D. Required Information Set Items and Properties (normative)
	E. Schema Components Diagram (non-normative)
	F. Glossary (non-normative)
	G. DTD for Schemas (non-normative)
	H. Analysis of the Unique Particle Attribution Constraint (non-normative)
	I. References (non-normative)
	J. Acknowledgements (non-normative)

